Author(s):
Juliana Leiwakabessy, Yahya, Mohammad Fadjar, Eddy Suprayitno
Email(s):
j.leiwakabessy@unipa.ac.id
DOI:
10.52711/0974-360X.2023.00689
Address:
Juliana Leiwakabessy1,3, Yahya2, Mohammad Fadjar2, Eddy Suprayitno2
1Doctor Program, Faculty of Fsheries and Marine Science, University of Brawijaya, Malang, East Java, Indonesia.
2Faculty of Fisheries and Marine Science, University of Brawijaya, Malang, East Java, Indonesia.
3Faculty of Fisheries and Marine Science, Papua University, Manokwari 98314, West Papua, Indonesia.
*Corresponding Author
Published In:
Volume - 16,
Issue - 9,
Year - 2023
ABSTRACT:
Tambelo reportedly has a positive impact on health. Our study investigates the possible effect of tambelo extract as an anti-inflammatory in mice induced by lipopolysaccharide(LPS)Tambelo phytochemistry from liquid chromatography analysis – high-resolution mass spectrometry (LCMS) coupled with NF-?B protein, docking was carried out to pursue anti-inflammatory properties. Thirty Balb/C mice were randomized into six groups: untreated, LPS, dexamethasone + LPS, and tambelo extract with doses of 100, 150, and 200 mg/kg BW + LPS, respectively. The results of this study indicate that there are four compounds which has a high affinity for the target protein. High CD4+CD25+ expression after treatment with fermented products tambelo (BE) significantly attenuated LPS-induced mice (p<0.05). Our findings show that fermentation tambelo protects against induced LPS by maintaining Tregs. Tambelo may have the potential as a food choice due to its anti-inflammatory properties.
Cite this article:
Juliana Leiwakabessy, Yahya, Mohammad Fadjar, Eddy Suprayitno. The Role of Tambelo Extract (Bactronophorus thoracites) in Mice-Induced Lipopolysaccharide: Food Health Benefits. Research Journal of Pharmacy and Technology 2023; 16(9):4213-8. doi: 10.52711/0974-360X.2023.00689
Cite(Electronic):
Juliana Leiwakabessy, Yahya, Mohammad Fadjar, Eddy Suprayitno. The Role of Tambelo Extract (Bactronophorus thoracites) in Mice-Induced Lipopolysaccharide: Food Health Benefits. Research Journal of Pharmacy and Technology 2023; 16(9):4213-8. doi: 10.52711/0974-360X.2023.00689 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-9-33
REFERENCES:
1. Maheswari MC, Venkatnarayanan DR, Babu MP, Jhonson DDB, Kattuparuthi S. Anti-Inflammatory activity of Methanol Extract of the Leaves of. Published online 2012:3.
2. Manju V, Revathi R, Murugesan M. In vitro Antioxidant, Antimicrobial, Anti-inflammatory, Anthelmintic Activity and Phytochemical Analysis of Indian Medicinal Spices. Published online 2011:4.
3. Yerragunta V, Saba A, Sadia A, et al. Evaluation of In-vitro Anti-Inflammatory activity of Petroleum Ether Extract of Butea monosperma Flowers. Rese Jour of Pharm and Technol. 2016; 9(6): 755. doi:10.5958/0974-360X.2016.00143.8
4. Sharma S, Gokulan PD, Jadon PS, Singh S, Shukla SS. Synthesis and Biological Evaluation of Some New Benzimidazole Derivatives For their Anticonvulsant and Anti-inflammatory activity. Published online 2011:9.
5. Rm C, Sv F, Pm S, Av K, Sb J. Evaluation of Ethanolic Extract of Moringa Oleifera for Wound Healing, Anti-inflammatory and Antioxidant Activities on Rats. Published online 2011:5.
6. Sahlan M, Devina A, Pratami DK, et al. Anti-inflammatory activity of Tetragronula species from Indonesia. Saudi Journal of Biological Sciences. 2019; 26(7): 1531-1538. doi:10.1016/j.sjbs.2018.12.008
7. Kaur M. Evaluation of Anti-inflammatory activity of Ethanol Extract of Bark of. Published online. 2013:2.
8. Abu-Taweel GM, Al-Mutary MG. Pomegranate juice rescues developmental, neurobehavioral and biochemical disorders in aluminum chloride-treated male mice. J Trace Elem Med Biol. 2021; 63:126655. doi:10.1016/j.jtemb.2020.126655
9. Wuryandari MRE, Atho’illah MF, Laili RD, et al. Lactobacillus plantarum FNCC 0137 fermented red Moringa oleifera exhibits protective effects in mice challenged with Salmonella typhi via TLR3/TLR4 inhibition and down-regulation of proinflammatory cytokines. J Ayurveda Integr Med. 2021; 13(2): 100531. doi:10.1016/j.jaim.2021.10.003
10. Zhao M, Du J. Anti-inflammatory and protective effects of D-carvone on lipopolysaccharide (LPS)-induced acute lung injury in mice. Journal of King Saud University- Science. 2020; 32(2): 1592-1596. doi:10.1016/j.jksus.2019.12.016
11. Leiwakabessy J. Chemical Composition and Identification of Antioxidant Compounds from the Extracts of Tambelo (Bactronophorus thoracites). Published online 2011. Accessed April 29, 2022. http://repository.ipb.ac.id/handle/123456789/52463
12. Rajurkar R, Jain R, Matake N, Aswar P, Khadbadi S. Anti-inflammatory Action of Abutilon indicum (L.) Sweet Leaves by HRBC Membrane Stabilization. Published online 2009:2.
13. Mohanasrinivasan V, Saranya D, Sumitha V, Kalpana R, Nivetha A. Studies on bioactive compounds and therapeutic potential of Terminalia chebula seed extract. Rese Jour of Pharm and Technol. 2018;11(5):1889. doi:10.5958/0974-360X.2018.00351.7
14. Sravani D, Aarathi K, Kumar NSS, Krupanidhi S, Ramu DV, Venkateswarlu TC. In Vitro Anti-Inflammatory Activity of Mangifera indica and Manilkara zapota Leaf Extract. Rese Jour of Pharm and Technol. 2015; 8(11):1477. doi:10.5958/0974-360X.2015.00264.4
15. Tomar H, Shukla VK, Arora K, Tomar N, Roy S. Curcuma longa: Review of Advances in Pharmacology. Published online 2012:4.
16. Jain H, Dhingra N, Narsinghani T, Sharma R. Insights into the mechanism of natural terpenoids as NF-κB inhibitors: an overview on their anticancer potential. Exp Oncol. 2016; 38(3):158-168.
17. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2: 17023. doi:10.1038/sigtrans.2017.23
18. Park MH, Hong JT. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells. 2016; 5(2): 15. doi:10.3390/cells5020015
19. Elly P, Feri Eko H, Jantje Wiliem S, Wahyu P, Tutut Indria P. Exploring public health benefits of Dolichos lablab as a dietary supplement during the COVID-19 outbreak: A computational study. J Appl Pharm Sci. Published online February 5, 2020. doi:10.7324/JAPS.2021.110217
20. Napoleon AA, Sharma V. Molecular Docking and In-vitro anti-inflammatory evaluation of Novel Isochromen-1-one analogues from Etodolac. Rese Jour of Pharm and Technol. 2017; 10(8): 2446. doi:10.5958/0974-360X.2017.00432.2
21. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015; 1263: 243-250. doi:10.1007/978-1-4939-2269-7_19
22. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010; 31(2): 455-461. doi:10.1002/jcc.21334
23. Aghai ZH, Kumar S, Farhath S, et al. Dexamethasone Suppresses Expression of Nuclear Factor-kappaB in the Cells of Tracheobronchial Lavage Fluid in Premature Neonates with Respiratory Distress. Pediatr Res. 2006; 59(6): 811-815. doi:10.1203/01.pdr.0000219120.92049.b3
24. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1): 42717. doi:10.1038/srep42717
25. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337-341. doi:10.1016/j.ddtec.2004.11.007
26. Rifa’i M, Widodo N. Significance of propolis administration for homeostasis of CD4+CD25+ immunoregulatory T cells controlling hyperglycemia. SpringerPlus. 2014; 3(1): 526. doi:10.1186/2193-1801-3-526
27. Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene. 2006; 25(51): 6887-6899. doi:10.1038/sj.onc.1209982
28. Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010; 1799(10-12): 775-787. doi:10.1016/j.bbagrm.2010.05.004
29. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337-341. doi:10.1016/j.ddtec.2004.11.007
30. Schmitz ML, Kracht M, Saul VV. The intricate interplay between RNA viruses and NF-κB. Biochim Biophys Acta. 2014; 1843(11): 2754-2764. doi:10.1016/j.bbamcr.2014.08.004
31. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Sig Transduct Target Ther. 2020; 5(1): 1-23. doi:10.1038/s41392-020-00312-6
32. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015; 3(10): 136. doi:10.3978/j.issn.2305-5839.2015.03.49
33. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & Diseases. 2021; 8(3): 287-297. doi:10.1016/j.gendis.2020.06.005
34. Mussbacher M, Salzmann M, Brostjan C, et al. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Frontiers in Immunology. 2019;10. Accessed May 5, 2022. https://www.frontiersin.org/article/10.3389/fimmu.2019.00085
35. Chen DE, Willick DL, Ruckel JB, Floriano WB. Principal component analysis of binding energies for single-point mutants of hT2R16 bound to an agonist correlate with experimental mutant cell response. J Comput Biol. 2015; 22(1): 37-53. doi:10.1089/cmb.2014.0192
36. Du X, Li Y, Xia YL, et al. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. Int J Mol Sci. 2016; 17(2): 144. doi:10.3390/ijms17020144
37. Zheng C, Yin Q, Wu H. Structural studies of NF-κB signaling. Cell Res. 2011; 21(1): 183-195. doi:10.1038/cr.2010.171
38. Schiebel J, Gaspari R, Wulsdorf T, et al. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat Commun. 2018; 9(1): 3559. doi:10.1038/s41467-018-05769-2
39. Pantsar T, Poso A. Binding Affinity via Docking: Fact and Fiction. Molecules. 2018; 23(8): 1899. doi:10.3390/molecules23081899
40. Herrington FD, Carmody RJ, Goodyear CS. Modulation of NF-κB Signaling as a Therapeutic Target in Autoimmunity. SLAS Discovery. 2016; 21(3):223-242. doi:10.1177/1087057115617456
41. Shih RH, Wang CY, Yang CM. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Frontiers in Molecular Neuroscience. 2015; 8. Accessed May 6, 2022. https://www.frontiersin.org/article/10.3389/fnmol.2015.00077
42. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337-341. doi:10.1016/j.ddtec.2004.11.007
43. Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol. 2016; 28(4): 163-171. doi:10.1093/intimm/dxw006
44. Sorini C, Cardoso RF, Gagliani N, Villablanca EJ. Commensal Bacteria-Specific CD4+ T Cell Responses in Health and Disease. Frontiers in Immunology. 2018; 9. Accessed May 9, 2022. https://www.frontiersin.org/article/10.3389/fimmu.2018.02667
45. Moatti A, Debesset A, Pilon C, et al. TNFR2 blockade of regulatory T cells unleashes an antitumor immune response after hematopoietic stem-cell transplantation. J Immunother Cancer. 2022; 10(4): e003508. doi:10.1136/jitc-2021-003508
46. Cronkite DA, Strutt TM. The Regulation of Inflammation by Innate and Adaptive Lymphocytes. J Immunol Res. 2018; 2018: 1467538. doi:10.1155/2018/1467538
47. Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016; 16(12): 741-750. doi:10.1038/nri.2016.99
48. Yuan Z, Cao K, Lin C, et al. The p53 Upregulated Modulator of Apoptosis (PUMA) Chemosensitizes Intrinsically Resistant Ovarian Cancer Cells to Cisplatin by Lowering the Threshold Set by Bcl-xL and Mcl-1. Mol Med. 2011; 17(11-12): 1262-1274. doi:10.2119/molmed.2011.00176
49. Ross SH, Cantrell DA. Signaling and Function of Interleukin-2 in T Lymphocytes. Annu Rev Immunol. 2018; 36: 411-433. doi:10.1146/annurev-immunol-042617-053352
50. Redmond WL, Ruby CE, Weinberg AD. The role of OX40-mediated co-stimulation in T cell activation and survival. Crit Rev Immunol. 2009; 29(3):187-201.