Author(s): Akanksha Dubey, Jayanthi Sivaraman

Email(s): jayanthi.s@vit.ac.in

DOI: 10.52711/0974-360X.2023.00726   

Address: Akanksha Dubey, Jayanthi Sivaraman*
Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore - 632 014, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 16,      Issue - 9,     Year - 2023


ABSTRACT:
As a leading cause of cancer-related mortality worldwide, hepatocellular carcinoma (HCC) is the most common cause of liver damage. The major causes for the expansion of hepatocellular carcinoma are hepatitis B and C, along with cirrhosis which is the root cause of cirrhosis. A detailed investigation has been carried out to find all possible causes and treatment methods to cure hepatocellular carcinoma. Numerous scan procedures available for hepatocellular carcinoma screening were explored and focussed along with remedial measures. It was found that in the case of computational drug designing, identifying and characterizing the biological target of concern is the foremost step. Scanning methods like magnetic resonance imaging, ultrasound, and computerized tomographic scan were found available for screening of hepatocellular carcinoma. Further, the remedial techniques include surgical resection, percutaneous ethanol injection, trans-arterial chemoembolization, molecularly targeted therapies, and systemic chemotherapy but these are tedious procedures with limitations. We found that regardless of the increasing resolution of protein structures, numerous drug targets, specifically membrane proteins, are difficult to identify structurally. It was also noticed that advances in structural biology methods had provided structural information of several biomarkers that serves as an influential method for drug discovery in the pharmaceutical industry. There is an urgent requirement to explore novel biomarkers and designing of novel drugs to cure hepatocellular carcinoma. This review focuses on all available causes and treatment procedures of hepatocellular carcinoma and also gives an overview of the computational approach used to explore the treatment methods against hepatocellular carcinoma.


Cite this article:
Akanksha Dubey, Jayanthi Sivaraman. Comparative Therapeutic Approaches for Hepatocellular Carcinoma- A Concise Review. Research Journal of Pharmacy and Technology 2023; 16(9):4447-4. doi: 10.52711/0974-360X.2023.00726

Cite(Electronic):
Akanksha Dubey, Jayanthi Sivaraman. Comparative Therapeutic Approaches for Hepatocellular Carcinoma- A Concise Review. Research Journal of Pharmacy and Technology 2023; 16(9):4447-4. doi: 10.52711/0974-360X.2023.00726   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2023-16-9-70


REFERENCES:
1.    Raza A, Sood GK. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World Journal of Gastroenterology: WJG. 2014; 20(15):4115. doi: 10.3748/wjg. v20.i15.4115
2.    Pandey P, Kar PK. Retrospective Study of Epidemiological Profile of Carcinomas. Research Journal of Pharmacology and Pharmacodynamics. 2013; 5(1): 58-61.
3.    Ferlay et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. 2010 Dec 15;127(12):2893-917. doi: 10.1002/ijc.25516
4.    Dr Y. Krishna Reddy, D. Kalpana. Formulation Development and Evaluation of Immediate Release Tablet Dosage form of SorafenibTosylate. Asian J. Pharm. Tech. 2020; 10(1):38-42. doi: 10.5958/2231-5713.2020.00008.2
5.    Paolini et al. Global mapping of pharmacological space. Nature Biotechnology. 2006;24(7):805-15. doi: 10.1038/nbt1228
6.    Lamb et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006 ;313(5795):1929-35. doi: 10.1126/science.1132939
7.    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.doi: 10.1016/j.cell.2011.02.013
8.    Shikha et al. A New Pharmacological model for Hepatocellular carcinoma in Channa Punctatus and its Pharmaco networking studies. Research Journal of Pharmacy and Technology. 2019; 12(7): 3559-3563. doi: 10.5958/0974-360X.2019.00607.3
9.    Al-Shimaa et al. Evaluation of clinical significance of kallistatin and macrophage inflammatory protein-1b for the diagnosis of liver cirrhosis and hepatocellular carcinoma in Egyptian patients. Research Journal of Pharmacy and Technology. 2019; 12(1): 43-49. doi: 10.5958/0974-360X.2019.00009.X
10.    Yi et al.  Alpha-fetoprotein-L3 in hepatocellular carcinoma: a meta-analysis. Clinica Chimica Acta. 2013; 425:212-20. doi: 10.1016/j.cca.2013.08.005
11.    Chen et al. Association between alpha-fetoprotein and metabolic syndrome in a Chinese asymptomatic population: a cross-sectional study. Lipids in Health and Disease. 2016; 15(1):1-9. doi: https://doi.org/10.1186/s12944-016-0256-x
12.    Yousuf et al. PWE-135 does Afp predict survival in patients with hepatocellular carcinoma (HCC)?. Gut. 2014;63(Suppl 1): A184-. doi:10.1136/gutjnl-2014-307263.395
13.    Zhang DY, Friedman SL. Fibrosis‐dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012; 56(2):769-75. doi: 10.1002/hep.25670
14.    Konopnicki et al. Hepatitis B and HIV: prevalence, AIDS progression, response to highly active antiretroviral therapy and increased mortality in the EuroSIDA cohort. Aids. 2005;19(6): 593-601. doi: 10.1097/01.aids.0000163936. 99401.fe
15.    Kruse et al. Clinical outcomes of hepatitis B virus coinfection in a United States cohort of hepatitis C virus‐infected patients. Hepatology. 2014; 60(6): 1871-8. doi: 10.1002/hep.27337
16.    Ghouri et al. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. Journal of Carcinogenesis. 2017; 16:1. doi: 10.4103/jcar. JCar_9_16
17.    Jhunjhunwala et al. Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biology. 2014;15(8):1-4. doi: https://doi.org/10.1186/s13059-014-0436-9
18.    Wu et al. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treatment Reviews. 2012 ;38(3):218-25. doi: 10.1016/j.ctrv.2011.06.010
19.    Toh et al. Deep sequencing of the hepatitis B virus in hepatocellular carcinoma patients reveals enriched integration events, structural alterations and sequence variations. Carcinogenesis. 2013;34(4):787-98. doi: 10.1093/carcin/bgs406
20.    Hino et al. Understanding the hypercarcinogenic state in chronic hepatitis: a clue to the prevention of human hepatocellular carcinoma. Journal of Gastroenterology. 2002;37(11):883-7. doi: 10.1007/s005350200149
21.    Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nature Reviews Cancer. 2007;7(8):599-612. doi: 10.1038/nrc2191
22.    Van et al. Surveillance for hepatocellular carcinoma is associated with increased survival: results from a large cohort in the Netherlands. Journal of Hepatology. 2015;63(5):1156-63. doi: 10.1016/j.jhep.2015.06.012
23.    Pandey P, Kar PK. Assessment of Suitability of Methods Used in the Diagnosis of Carcinomas. Research Journal of  Pharmacology and Pharmacodynamics. 2013; 5(2):  98-100
24.    Sangiovanni et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut. 2010;59(5):638-44. doi: 10.1136/gut.2009.187286
25.    Sanyal et al.  Population-based risk factors and resource utilization for HCC: US perspective. Current Medical Research and Opinion. 2010;26(9):2183-91. doi: 10.1185/03007995.2010.506375 doi:10.1185/03007995.2010.506375
26.    Crissien AM, Frenette C. Current management of hepatocellular carcinoma. Gastroenterology and Hepatology. 2014 ;10(3):153.
27.    Wong R, Frenette C. Updates in the management of hepatocellular carcinoma. Gastroenterology and Hepatology. 2011;7(1):16.
28.    Vivarelli et al.  Multimodal treatment of hepatocellular carcinoma on cirrhosis: an update. World Journal of Gastroenterology: WJG. 2013;19(42):7316. doi: 10.3748/wjg. v19.i42.7316
29.    BaldevKrishan Sharma. Synthetic and Natural Compounds as Anti-Cancer Agents – A Review . Asian J. Research Chem. 2017; 10(5): 699-707. doi: 10.5958/0974-4150.2017.00119.5
30.    Bishwo et al. Antioxidant and Anticancer potential of Methanolic extract of Kigeliapinnata fruits against DENA induced Hepatocellular Carcinoma in rats. Research J. Pharm. and Tech. 2019; 12(6): 2784-2789. doi: 10.5958/0974-360X.2019.00468.2
31.    Perumal S, Langeswaran K. Diosmin anti-tumour efficacious against Hepatocellular Carcinoma. Research J. Pharm. and Tech. 2020; 13(4):1707-1714. doi: 10.5958/0974-360X.2020.00308.X
32.    Rahamat et al. In Vitro cytotoxicity of L-Glutaminase against Hep-G2 cell lines. Research J. Pharm. and Tech. 2018; 11(6): 2213-2216. doi: 10.5958/0974-360X.2018.00409.2
33.    Ana Catarina Viana Valle, Aloísio Cunha de Carvalho. Long-Term Survival of a Patient with Hepatocellular Carcinoma under Treatment with Viscum album – Case Report. Research Journal of Science and Technology. 2021; 13(4):237-3. doi: 10.52711/2349-2988.2021.00037
34.    March-Vila et al. On the integration of in silico drug design methods for drug repurposing. Frontiers in Pharmacology. 2017; 8:298. doi: 10.3389/fphar.2017.00298
35.    Bian et al. Potential role of microRNA-183 as a tumor suppressor in hepatocellular carcinoma. Cellular Physiology and Biochemistry. 2018; 51(5):2065-72. doi: 10.1159/000495825
36.    Shi et al. Alternatively activated NUSAP1 promotes tumor growth and indicates poor prognosis in hepatocellular carcinoma. Translational Cancer Research. 2019; 8(1): 238. doi: 10.21037/tcr.2019.01.29
37.    Kanahaiya et al. In Silico Analysis On Phytoestrogens from Dried Fruits as Beta-Catenin Inhibitors in Liver Cancer.
38.    Foerster et al. The immune contexture of hepatocellular carcinoma predicts clinical outcome. Scientific Reports. 2018; 8(1):1-1. doi: 10.1038/s41598-018-21937-2
39.    Chen et al. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013; 29(4):420-7. doi: 10.1093/bioinformatics/bts715l
40.    Solmon et al. Antineoplastic activity of monocrotaline against hepatocellular carcinoma. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2014;14(9):1237-48. doi: 10.2174/1871520614666140715085907
41.    Bidkhori et al. Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proceedings of the National Academy of Sciences. 2018; 115(50): E11874-83. doi: 10.1073/pnas.1807305115
42.    Kaur et al. Identification of platform-independent diagnostic biomarker panel for hepatocellular carcinoma using large-scale transcriptomics data. Frontiers in Genetics. 2020; 10:1306. doi: 10.3389/fgene.2019.01306
43.    Won et al. Protein disulfide isomerase inhibition synergistically enhances the efficacy of sorafenib for hepatocellular carcinoma. Hepatology. 2017; 66(3):855-68. doi: 10.1002/hep.29237
44.    Shahrisa et al. The pattern of gene copy number variations (CNVs) in hepatocellular carcinoma: in silico analysis. doi: 10.21203/rs.3.rs-20514/v2
45.    Ramana et al. Flavones: Potential antidengue targets in silico approach. Journal of Chemical and Pharmaceutical Research. 2015;7(8):585-91.
46.    Ding et al. In silico analysis excavates potential biomarkers by constructing miRNA-mRNA networks between non-cirrhotic HCC and cirrhotic HCC. Cancer Cell International. 2019;19(1):1-5. doi: 10.1186/s12935-019-0901-3
47.    Ayoub et al. Structural re-positioning, in silico molecular modelling, oxidative degradation, and biological screening of linagliptin as adenosine 3 receptor (ADORA3) modulators targeting hepatocellular carcinoma. Journal of Enzyme Inhibition and Medicinal Chemistry. 2018; 33(1):858-66. doi: 10.1080/14756366.2018.146280.
48.    Suganya V, Anuradha V. In silico molecular docking of astaxanthin and sorafenib with different apoptotic proteins involved in hepatocellular carcinoma. Biocatalysis and Agricultural Biotechnology. 2019; 19:101076. doi: 10.1016
49.    Mohamed et al. Comparative in Silico Docking Studies of Hinokitiol with Sorafenib and Nilotinib against Proto-Oncogene Tyrosine-Protein Kinase (ABL1) and Mitogen-activated Protein Kinase (MAPK) to Target Hepatocellular Carcinoma. Research J. Pharm. and Tech. 2017; 10(1): 257-262. doi: 10.5958/0974-360X.2017.00053.1
50.    Rajendraprasad et al. Insilico Prodrug Designing of Some Matrix Metallo Proteinase Inhibitors Derived From Tanomastat. Asian J. Research Chem. 2010; 3(2): 411-415.
51.    Shankari et al. Identification and Designing Inhibitors for Hepatocellular Carcinoma by Targeting Claudin-10. Research J. Pharm. and Tech. 2018; 11(8): 3529-3533. doi: 10.5958/0974-360X.2018.00652.2

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available