Author(s): Feuangthit Niyamissara Sorasitthiyanukarn, Krittiya Singcharoen, Narissara Kulpreechanan

Email(s): feuangthitns@gmail.com

DOI: 10.52711/0974-360X.2024.00735   

Address: Feuangthit Niyamissara Sorasitthiyanukarn1,2*, Krittiya Singcharoen3, Narissara Kulpreechanan4
1The Division of International Programs, Universidad Azteca, Chalco, C.P. 56600, Mexico.
2Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
3Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
4Department of Public Health, Faculty of Medicine, Western University (Watcharapol Campus), Pathum Thani 12150, Thailand.
*Corresponding Author

Published In:   Volume - 17,      Issue - 10,     Year - 2024


ABSTRACT:
Lutein-loaded chitosan/alginate nanoparticles (LT-CS/ALG-NPs) were developed via o/w emulsification and ionotropic gelation, designed and optimized using Box–Behnken design and response surface methodology. The nanoparticles exhibited a particle size of 219±14nm, zeta potential of -30.7±0.6mV, and encapsulation efficiency of 85.6±1.7%. TEM confirmed their spherical, dense, and uniform structure. LT-CS/ALG-NPs demonstrated a rapid initial release of LT, followed by sustained release under simulated gastrointestinal conditions. Stability tests under UV and heat exposure indicated robustness, with stability maintained for up to three months at 4°C. In vitro studies revealed that LT bioaccessibility from these nanoparticles was 3.6 times higher compared to unencapsulated LT. Moreover, enhanced biological activities, including radical scavenging and hemolysis protection, were observed. These findings highlight the potential of LT-CS/ALG-NPs for applications in nutraceuticals, functional foods, dietary supplements, and therapeutics.


Cite this article:
Feuangthit Niyamissara Sorasitthiyanukarn, Krittiya Singcharoen, Narissara Kulpreechanan. Enhancing Lutein Delivery through Chitosan/Alginate Nanoparticles: A Study on Improved Stability, Bioaccessibility and Biological Activity. Research Journal of Pharmacy and Technology. 2024; 17(10):4771-9. doi: 10.52711/0974-360X.2024.00735

Cite(Electronic):
Feuangthit Niyamissara Sorasitthiyanukarn, Krittiya Singcharoen, Narissara Kulpreechanan. Enhancing Lutein Delivery through Chitosan/Alginate Nanoparticles: A Study on Improved Stability, Bioaccessibility and Biological Activity. Research Journal of Pharmacy and Technology. 2024; 17(10):4771-9. doi: 10.52711/0974-360X.2024.00735   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-20


7. REFERENCES:
1.    Prabhu, A., Abdul, K.S., and Rekha, P-D. Isolation and Purification of Lutein from Indian Spinach Basella alba. Research Journal of Pharmacy and Technology. 2015; 8(10): 1379-1382.
2.    Pap, R., Pandur, E., Jánosa, G., Sipos, K., Agócs, and A., Deli, J. Lutein Exerts Antioxidant and Anti-Inflammatory Effects and Influences Iron Utilization of BV-2 Microglia. Antioxidants, 2021; 10(3): 363.
3.    Eom, J.W., Lim, J.W., and Kim, H. (2023). Lutein Induces Reactive Oxygen Species-Mediated Apoptosis in Gastric Cancer AGS Cells via NADPH Oxidase Activation. Molecules, 28(3), 1178.
4.    Gopal, S.S., Sukhdeo, S.V., Vallikannan, B., and Ponesakki, G.  Lutein ameliorates high-fat diet-induced obesity, fatty liver, and glucose intolerance in C57BL/6J mice. Phytotherapy Research, 2023; 37(1): 329-334.
5.    Mrowicka, M., Mrowicki, J., Kucharska, E., and Majsterek, I. Lutein and Zeaxanthin and Their Roles in Age-Related Macular Degeneration-Neurodegenerative Disease. Nutrients, 2022; 14(4): 827.
6.    Sampathkumar, S.J., Srivastava, P., Ramachandran, S., Sivashanmugam, K., and Gothandam, K.M. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microbial Pathogenesis, 2019; 135: 103658.
7.    Li, L.H., Lee, J.C., Leung, H.H., Lam, W.C., Fu, Z., and Lo, A.C.Y. Lutein Supplementation for Eye Diseases. Nutrients, 2020; 12(6): 1721.
8.    Long, A.C., Kuchan, M.J., and Mackey, A.D. Lutein as an Ingredient in Pediatric Nutritionals. Journal of AOAC International. 2019; 102(4): 1034–1043.
9.    Wu, R., Qie, X., Wang, Z., Chen, Q., Zeng, M., Chen, J., Qin, F., and He, Z. Improved Light and In Vitro Digestive Stability of Lutein-Loaded Nanoparticles Based on Soy Protein Hydrolysates via Pepsin. Foods. 2022; 11(22): 3635.
10.    Yu, N., Shao, S., Huan, W., Ye, Q., Nie, X., Lu, Y., and Meng, X. Preparation of novel self-assembled albumin nanoparticles from Camellia seed cake waste for lutein delivery. Food Chemistry, 2022; 389: 133032.
11.    Ma, R., Lin, Z., Wu, Y., Gao, Z., Hu, B., Xu, L., Fang, Y., and Nishinari, K. Modulating the in vitro gastric digestion of heat-induced beta-lactoglobulin aggregates: Incorporation with polysaccharide. Food Chemistry. 2021; 354: 129506.  
12.    Gayathri. S., and Radhika Rajasree. S. R. Impact of Physicochemical Parameters on the Stability of Β, Ε-Carotene-3, 3′-Diol (Lutein) Extracted from Marine Alga Chlorella salina. Research Journal of Pharmacy and Technology. 2018; 11(8): 3308-3312.
13.    Prabhakar, C., and Krishna, K. A review on polymeric nanoparticles. Research Journal of Pharmacy and Technology. 2011; 4: 496-498.
14.    Krishnan, P., and Sivakumar, R. (2019). Nanotechnology: Modern Formulation and Evaluation Techniques -An Overview. Research Journal of Pharmacy and Technology. 12, 4039-4044.
15.    Chaudhry, G-e-S., Md Akim, A., Yeong, Y.S., Tengku, M., and Tengku, S. Polymeric Nanoparticles methods of preparation and Drug Release Models: Effectiveness towards Drug Delivery Systems. Research Journal of Pharmacy and Technology. 2022; 15(7): 2883-2887.
16.    Lu, Y., Zhang, B., Shen, H., Ge, X., Sun, X., Zhang, Q., Zhang, X., Sun, Z., and Li, W. Sodium Caseinate and Acetylated Mung Bean Starch for the Encapsulation of Lutein: Enhanced Solubility and Stability of Lutein. Foods (Basel, Switzerland), 2021; 11(1): 65.
17.    Niculescu, A.G., and Grumezescu, A.M. (2022). Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. Nanomaterials (Basel, Switzerland), 12(2), 186.
18.    Li, S., Zhang, H., Chen, K., Jin, M., Vu, S.H., Jung, S., He, N., Zheng, Z., and Lee, M.S. (2022). Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Delivery, 29(1), 1142–1149.
19.    Doba, S., and Dagher, S. Pharmacological and biological effects of chitosan. Research Journal of Pharmacy and Technology. 2020; 13(2): 1043-1049.  
20.    Matalqah, S.M., Aiedeh, K., Mhaidat, N.M., Alzoubi, K.H., Bustanji, Y., and Hamad, I. Chitosan Nanoparticles as a Novel Drug Delivery System: A Review Article. Current Drug Targets, 2020; 21(15): 1613–1624.
21.    Sarmento, B., Ribeiro, A.J., Veiga, F., Ferreira, D.C., and Neufeld, R.J. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. Journal of Nanoscience and Nanotechnology, 2007; 7(8): 2833–2841.
22.    Shinde, Anilkumar. Lovastatin loaded Chitosan Nanoparticles: Preparation, Evaluation and In vitro release studies. Research Journal Pharmacy Technology Journal. 2011; 4(12): 1869-1876.
23.    Chavarri, M., Marañón, I., Ares, R., Ibáñez, F., Marzo, F., and Villarán, M. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology. 2010; 142: 185-189.
24.    González-Rodríguez, M.L., Holgado, M.A., Sánchez-Lafuente, C., Rabasco, A.M., and Fini, A. Alginate/chitosan particulate systems for sodium diclofenac release. International Journal of Pharmaceutics. 2002; 232:  225–234.
25.    Toragall, V., Jayapala, N., and Vallikannan, B. Chitosan-oleic acid-sodium alginate a hybrid nanocarrier as an efficient delivery system for enhancement of lutein stability and bioavailability. International Journal of Biological Macromolecules. 2020; 150: 578–594.
26.    Xiao, S., and Ahn, D.U. Enhanced lutein stability under UV-Light and high temperature by loading it into alginate-chitosan complex. LWT - Food Science and Technology. 2022; 164: 113663.
27.    Supare, V., Wadher, K., and Umekar, M. Experimental Design: Approaches and Applications in Development of Pharmaceutical Drug Delivery System. Journal of Drug Delivery and Therapeutics. 2021; 11(4-S): 154-61.
28.    Macwan, M., and Prajapati, B. Development, Optimization and Characterization of Ocular Nanoemulsion of an Antifungal Agent using Design of Experiments. Research Journal of Pharmacy and Technology. 2022; 15(5): 2273-2278.
29.    Chaudhari, P., Jadhav, S., Chaudhari, P., Wankhede, S., Chandewar, S. Optimization of Tacrolimus Loaded Reconstituted Nanoparticles by QbD Method. Research Journal of Pharmacy and Technology. 2023; 16(3): 1359-1368.
30.    Sorasitthiyanukarn, F.N., Muangnoi, C., Gomez, C.B., Suksamrarn, A., Rojsitthisak, P., and Rojsitthisak, P. Potential Oral Anticancer Therapeutic Agents of Hexahydrocurcumin-Encapsulated Chitosan Nanoparticles against MDA-MB-231 Breast Cancer Cells. Pharmaceutics. 2023; 15(2): 472.
31.    Omer, A.M., Ahmed, M.S., El-Subruiti, G.M., Khalifa, R.E., and Eltaweil, A.S. Ph-Sensitive Alginate/Carboxymethyl Chitosan/Aminated Chitosan Microcapsules for Efficient Encapsulation and Delivery of Diclofenac Sodium. Pharmaceutics. 2021; 13(3): 338.
32.    Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., and Xie, S. DDSolver: An Add-in Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS Journal. 2010; 12: 263–271.
33.    Shah, B.R., Zhang, C., Li, Y. and Li, B. Bioaccessibility and Antioxidant Activity of Curcumin after Encapsulated by Nano and Pickering Emulsion Based on Chitosan-Tripolyphosphate Nanoparticles. Food Research International. 2016; 89(Pt 1): 399–407.
34.    Sarkar, A., Goh, K.K.T., and Singh, H. Colloidal Stability and Interactions of Milk-Protein-Stabilized Emulsions in an Artificial Saliva. Food Hydrocolloids. 2009; 23(5): 1270-1278.
35.    Navarro-Hoyos, M., Alvarado-Corella, D., Moreira-Gonzalez, I., Arnaez-Serrano, E., and Monagas-Juan, M. Polyphenolic Composition and Antioxidant Activity of Aqueous and Ethanolic Extracts from Uncaria Tomentosa Bark and Leaves. Antioxidants. 2018; 7: 65.
36.    Gunathilake, K.D.D.P., Ranaweera, K.K.D.S. and Vasantha Rupasinghe, H.P. In vitro Anti-Inflammatory Properties of Selected Green Leafy Vegetables. Biomedicines. 2018; 6: 107.
37.    Jiang, L., Yu, Y., Li, Y., Yu, Y., Duan, J., Zou, Y., Li, Q. and Sun, Z. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles. Nanoscale Research Letters. 2016; 11: 57.   
38.    Xiao, S., and Ahn, D.U. Enhanced Lutein Stability under UV-Light and High Temperature by Loading it into Alginate-Chitosan Complex. LWT - Food Science and Technology. 2022; 164: 113663.
39.    Loquercio, A., Castell-Perez, E., Gomes, C., and Moreira, R. G. Preparation of Chitosan-Alginate Nanoparticles for Trans-cinnamaldehyde Entrapment. Journal of Food Science. 2015; 80(10): N2305–N2315.
40.    Thai, H., Thuy Nguyen, C., Thi Thach, L., Thi Tran, M., Duc Mai, H., Thi Thu Nguyen, T., et al. Characterization of Chitosan/alginate/lovastatin Nanoparticles and Investigation of Their Toxic Effects In Vitro and In Vivo. Scientific Reports. 2020; 10(1): 909.  
41.    Elgegren, M., Kim, S., Cordova, D., Silva, C., Noro, J., Cavaco-Paulo, A., and Nakamatsu, J. Ultrasound-Assisted Encapsulation of Sacha Inchi (Plukenetia volubilis Linneo.) Oil in Alginate-Chitosan Nanoparticles. Polymers. 2019; 11(8): 1245.
42.    De, S., and Robinson, D. Polymer relationships during preparation of chitosan-alginate and poly-L-lysine-alginate nanospheres. Journal of Controlled Release. 2003; 89: 101-112.
43.    Nguyen, K.T., Le, D.V., Do, D.H., and Le, Q.H. Development of Chitosan Graft Pluronic® F127 Copolymer Nanoparticles Containing DNA Aptamer for Paclitaxel Delivery to Treat Breast Cancer Cells. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016; 7: 025018.
44.    Deng, Q.Y., Zhou, C.R., and Luo, B.H. Preparation and Characterization of Chitosan Nanoparticles Containing Lysozyme. Pharmaceutical Biology. 2006; 44: 336–342.
45.    Ghorab, M., Gardouh, A., and Gad, S. Effect of viscosity, surfactant type and concentration on physicochemical properties of solid lipid nanoparticles. International Journal of Pharmacy and Pharmaceutical Sciences. 2015; 7: 145–153.
46.    Sorasitthiyanukarn, F.N., Muangnoi, C., Ratnatilaka Na Bhuket, P., Rojsitthisak, P., and Rojsitthisak, P. Chitosan/alginate nanoparticles as a promising approach for oral delivery of curcumin diglutaric acid for cancer treatment. Materials Science and Engineering. C, Materials for Biological Applications. 2018; 93: 178–190.
47.    Lino, R.C., de Carvalho, S.M., Noronha, C.M., Sganzerla, M.G., da Rosa, C.G., Nunes, M.R., and Barreto, P.L.M. Development and Characterization of Poly-Caprolactone Nanocapsules Containing β-carotene Using the Nanoprecipitation Method and Optimized by Response Surface Methodology. Brazilian Archives of Biology and Technology. 2020; 63: e20190184.
48.    Rosyada, A., Sunarharum, W.B., and Waziiroh, E. Characterization of Chitosan Nanoparticles as An Edible Coating Material. IOP Conference Series: Earth and Environmental Science. 2019; 230: 012043.
49.    Avadi, M.R., Sadeghi, A.M., Mohammadpour, N., Abedin, S., Atyabi, F., Dinarvand, R., Rafiee-Tehrani, M. Preparation and Characterization of Insulin Nanoparticles using Chitosan and Arabic Gum with Ionic Gelation Method. Nanomedicine, 2010; 6: 58–63
50.    Lim, J., Yeap, S.P., Che, H.X., and Low, S.C. Characterization of Magnetic Nanoparticle by Dynamic Light Scattering. Nanoscale Research Letters. 2013; 8: 381.
51.    Wang, B., Yu, X.C., Xu, S.F., and Xu, M. Paclitaxel and Etoposide co-Loaded Polymeric Nanoparticles for the Effective Combination Therapy Against Human Osteosarcoma. Journal of Nanobiotechnology. 2015; 22: 1–11.
52.    Bao, H., Zhang, Q., Xu, H., and Yan, Z. Effects of Nanoparticle Size on Antitumor Activity of 10-Hydroxycamptothecin-Conjugated Gold Nanoparticles: In vitro and in vivo Studies. International Journal of Nanomedicine. 2016; 11: 929–940.
53.    Kishore, U. K., Prashant, K., Suresh, K.G., and Paraag, G. Development and Characterization of Chitosan Nanoparticles and Improvement of Oral Bioavailability of Poorly Water-Soluble Acyclovir. Research Journal of Pharmacy and Technology. 2010; 3(4): 1241-1245.
54.    Fonseca-Santos, B., and Chorilli, M. An Overview of Carboxymethyl Derivatives of Chitosan: Their Use as Biomaterials and Drug Delivery Systems. Materials Science and Engineering. C, Materials for Biological Applications. 2017; 77: 1349–1362.
55.    Nasra, M.M.A., Khiri, H.M., Hazzah, H.A., and Abdallah, O.Y. Formulation, in vitro Characterization and Clinical Evaluation of Curcumin in-situ Gel for Treatment of Periodontitis. Drug Delivery. 2017; 24: 133–142.
56.    Sorasitthiyanukarn, F.N., Ratnatilaka Na Bhuket, P., Muangnoi, C., Rojsitthisak, P., and Rojsitthisak, P. Chitosan/alginate nanoparticles as a promising carrier of novel curcumin diethyl diglutarate. International Journal of Biological Macromolecules. 2019; 131: 1125–1136.
57.    Weissmann, G., Spjlberg, I., and Krakauer, K. Arthritis Induced in Rabbits by Lysates of Granulocyte Lysosomes. Arthritis and Rheumatism. 1969; 12: 103–116.
58.    Hess, S., and Milonig, R. Inflammation. In Inflammation, Mechanism and Control; Lepow, L., Ward, P., Eds.; Academic Press: New York, NY, USA, 1972: 1–2.
59.    Niza, E., Nieto-Jiménez, C., del Mar Noblejas-López, M., Bravo, I., Castro-Osma, A., de La Cruz-Martínez, F., Martínez De Sarasa Buchaca, M., Posadas, I., Canales-Vázquez, J., Lara-Sanchez, A., et al. Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy. Nanomaterials. 2019; 9: 1208.
60.    San, H. H. M., Alcantara, K. P., Bulatao, B. P. I., Sorasitthiyanukarn, F. N., Nalinratana, N., Suksamrarn, A., and Rojsitthisak, P. Folic Acid-Grafted Chitosan-Alginate Nanocapsules as Effective Targeted Nanocarriers for Delivery of Turmeric Oil for Breast Cancer Therapy. Pharmaceutics. 2022; 15(1): 110.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available