Author(s):
Astha, U.S. Mahadeva Rao, M.S Ashawat, Rashmi Arora, Lee Wan Zhen
Email(s):
raousm@unisza.edu.my
DOI:
10.52711/0974-360X.2024.00759
Address:
Astha1, U.S. Mahadeva Rao2*, M.S Ashawat1, Rashmi Arora3, Lee Wan Zhen2
1Laureate Institute of Pharmacy, Kangra, Himachal Pradesh, India.
2Universiti Sultan Zainal Abidin, Terengganu, Malaysia.
3Chitkara College of Pharmacy, Chitkara University, Punjab, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 10,
Year - 2024
ABSTRACT:
The breast cancer is one of most prevalent cancer in women, and after lung cancer, it is the second greatest death cause in women. From previous years, progress has been made and continues to be made in the breast cancer vaccines development. It is a great approach to create hybrid compounds by combining distinct pharmacophores to gain important biological activity. The use of coumarin in conjunction with other themes has resulted in the creation of novel strategies to combat breast cancer. Coumarin has been shown in reviewed literature to be a potent antidote for breast cancer, binding to different biological targets linked to the disease. The hybrids of Coumarin have recently gained the notice of researchers who want to investigate their therapeutic potential in the treatment of breast cancer due to their minimal toxicity in multiple organ systems. Interactions with isoxazoles, thiazoles, monastrol, chalcone, triazole, sulphonamide, and other coumarin strains have been reported. The definitions of the different coumarin compounds, as well as their structural connections, are described in this review article.
Cite this article:
Astha, U.S. Mahadeva Rao, M.S Ashawat, Rashmi Arora, Lee Wan Zhen. A Review on Design of Coumarin Hybrids in the Treatment of Breast Cancer. Research Journal of Pharmacy and Technology. 2024; 17(10):4934-0. doi: 10.52711/0974-360X.2024.00759
Cite(Electronic):
Astha, U.S. Mahadeva Rao, M.S Ashawat, Rashmi Arora, Lee Wan Zhen. A Review on Design of Coumarin Hybrids in the Treatment of Breast Cancer. Research Journal of Pharmacy and Technology. 2024; 17(10):4934-0. doi: 10.52711/0974-360X.2024.00759 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-10-44
REFERENCES:
1. Hsiao YH, Chou MC, Fowler C, Mason JT, Man YG. Breast cancer heterogeneity: mechanisms, proofs, and implications. Journal of Cancer. 2010; 1: 6.
2. Becker S. A historic and scientific review of breast cancer: The next global healthcare challenge. International Journal of Gynaecology & Obstetrics. 2015 Oct; 131: S36-9.
3. Bhatia R, Rawal RK. Coumarin Hybrids: Promising Scaffolds in the Treatment of Breast Cancer. Mini Reviews in Medicinal Chemistry. 2019 Oct 1; 19(17):1443-58.
4. Hussein O, Kemerovo SV. Breast cancer at bone metastatic sites: recent discoveries and treatment targets. Journal of Cell Communication and Signalling. 2011 Jun 1; 5(2):85-99.
5. Ravnan MC, Ravnan SL, Walberg MP. Metastatic breast cancer: A review of current and novel pharmacotherapy. Formulary. 2011 Apr 1; 46(4).
6. BaLLazhI L, PoPovSki E, JAShAri A, Imeri F, and Ibrahimi I, Mikhova B, Mladenovska K. Potential antiproliferative effect of isoxazolo-and thiazolo coumarin derivatives on breast cancer mediated bone and lung metastases. Acta Pharmaceutical. 2015 Mar 1; 65(1):53-63.
7. Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S, Costa A, and Winer EP, Cardoso F. International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? Journal of the National Cancer Institute. 2010 Jan 1; 102(7):456-63.
8. Sashidhara KV, Kumar M, Sonkar R, Singh BS, Khanna AK, Bhatia G. Indole-based fibrates as potential hypolipidemic and antiobesity agents. Journal of Medicinal Chemistry. 2012 Mar 22; 55(6): 2769-79.
9. Chen S, Cho M, Karlsberg K, Zhou D, Yuan YC. Biochemical and biological characterization of a novel anti-aromatase coumarin derivative. Journal of Biological Chemistry. 2004 Nov 12; 279(46): 48071-8.
10. Musa MA, Cooper wood JS, Khan MO. A review of coumarin derivatives in pharmacotherapy of breast cancer. Current medicinal chemistry. 2008 Nov 1; 15(26): 2664-79.
11. Bhatia R, Rawal RK. Coumarin Hybrids: Promising Scaffolds in the Treatment of Breast Cancer. Mini Reviews in Medicinal Chemistry. 2019 Oct 1; 19(17):1443-58.
12. Lewis JS, Jordan VC. Selective estrogens receptor modulators (SERMs): mechanisms of ant carcinogenesis and drug resistance. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005 Dec 11; 591(1-2):247-63.
13. Harada K, Kubo H, Tomigahara Y, Nishioka K, Takahashi J, Momose M, Inoue S, Kojima A. Coumarins as novel 17β-hydroxysteroid dehydrogenase type 3 inhibitors for potential treatment of prostate cancer. Bioorganic & Medicinal Chemistry Letters. 2010 Jan 1; 20(1):272-5.
14. BaLLazhI L, PoPovSki E, JAShAri A, Imeri F, and Ibrahimi I, Mikhova B, Mladenovska K. Potential antiproliferative effect of isoxazolo-and thiazolo coumarin derivatives on breast cancer mediated bone and lung metastases. Acta Pharmaceutical. 2015 Mar 1; 65(1):53-63.
15. Sashidhara KV, Avula SR, Sharma K, Palnati GR, Bathula SR. Discovery of coumarin–monastrol hybrid as potential antibreast tumor-specific agent. European Journal of Medicinal Chemistry. 2013 Feb 1; 60:120-7.
16. You L, An R, Wang X, Li Y. Discovery of novel osthole derivatives as potential anti-breast cancer treatment. Bioorganic & Medicinal Chemistry Letters. 2010 Dec 15; 20(24):7426-8.
17. Patel K, Karthikeyan C, Raja Solomon V, S Hari Narayana Moorthy N, Lee H, Sahu K, Singh Deora G, Trivedi P. Synthesis of some coumarinyl chalcones and their antiproliferative activity against breast cancer cell lines. Letters in Drug Design & Discovery. 2011 May 1; 8(4):308-11.
18. Kahveci B, Yılmaz F, Menteşe E, Ülker S. Design, synthesis, and biological evaluation of coumarin–triazole hybrid molecules as potential antitumor and pancreatic lipase agents. Archive Der Pharmazie. 2017 Aug; 350(8):1600369.
19. Reddy NS, Mallireddigari MR, Cosenza S, Gumireddy K, Bell SC, Reddy EP, Reddy MR. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorganic & Medicinal Chemistry Letters. 2004 Aug 2; 14(15):4093-7.
20. Kini SG, Choudhary S, Mubeen M. Synthesis, docking study and anticancer activity of coumarin substituted derivatives of benzothiazole. Journal of Computational Methods in Molecular Design. 2012 Dec; 2(1):6.
21. Sashidhara KV, Kumar A, Kumar M, Sarkar J, Sinha S. Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters. 2010 Dec 15; 20(24):7205-11.
22. Morsy SA, Farahat AA, Nasr MN, Tantawy AS. Synthesis, molecular modeling and anticancer activity of new coumarin containing compounds. Saudi Pharmaceutical Journal. 2017 Sep 1; 25(6):873-83.
23. Goel R, Luxami V, Paul K. Synthesis, in vitro anticancer activity and SAR studies of arylated imidazo [1, 2-a] pyrazine–coumarin hybrids. RSC Advances. 2015; 5(47):37887-95.
24. Sharif, N.M.; Mustahil, N.; Noor, N.M.; Sukari, M.; Rahmani, M.; Taufiq-Yap, Y.; Ee, G. Cytotoxic constituents of Clausena excavata. Afr. J. Biotechnol., 2011, 10(72), 16337-16341. [113] Yao, G-D.; Cheng, Z-Y.; Shang, X-Y.; Gao, P-Y.; Huang, X-X.; Song, S-J. Coumarins from the bark of Juglans mandshurica exhibited anti-hepatoma activities via inducing apoptosis. J. Asian Nat. Prod. Res., 2017, 19(11), 1134-1142.
25. Chun, J.; Kim, J.; Kim, Y.S. 3′, 4′-Disenecioylkhellactone from Peucedanum japonicum Thunb. Induces apoptosis mediated by inhibiting STAT3 signaling in human gastric cancer cells. Korean J. Pharmacogn., 2018, 49(3), 225-230.
26. Maleki, D.; Kyoomehr, P.; Rajabi, A.; Amin, G.; Azizi, E. Cytotoxic activity of Ammi visnaga (L.) Lam. against T47D (breast ductal carcinoma) cell line. North Khorasan Univ. Med. Sci., 2012.
27. Shen, X.; Chen, G.; Zhu, G.; Cai, J.; Wang, L.; Hu, Y.; Fong, W.F. 3′-O, 4′-O-aromatic acyl substituted 7,8-pyranocoumarins: a new class of P-glycoprotein modulators. J. Pharm. Pharmacol., 2012, 64(1), 90-100.
28. Kathuria, A.; Jalal, S.; Tiwari, R.; Shirazi, A.N.; Gupta, S.; Kumar, S.; Parang, K.; Sharma, S.K. Substituted coumarin derivatives: Synthesis and evaluation of antiproliferative and Src kinase inhibitory activities. Chem. Biol. Interface, 2011, 1, 279-296.
29. Ren, L.; Du, X.; Hu, M.; Yan, C.; Liang, T.; Li, Q. Design, synthesis and antitumor activity of novel 4-methyl-(3‘S,4’S)-ciskhellactone derivatives. Molecules, 2013, 18(4), 4158-4169.
30. Jóźwiak, M.; Struga, M.; Roszkowski, P.; Filipek, A.; Nowicka, G.; Olejarz, W. Anticancer effects of alloxanthoxyletin and fatty acids esters - In vitro study on cancer HTB-140 and A549 cells. Biomed. Pharmacotherapy. 2019, 110, 618-630.
31. Ostrowska, K.; Olejarz, W.; Wrzosek, M.; Głuszko, A.; Nowicka, G.; Szczepański, M.; Materek, I.B.; Kozioł, A.E.; Struga, M. Anticancer effects of O-aminoalkyl derivatives of alloxanthoxyletin and seselin. Biomed. Pharmacother., 2017, 95, 1412-1424.
32. Shi, W.; Zhang, J.; Bao, N.; Guan, F.; Chen, L.; Sun, J. Design, synthesis, and cytotoxic evaluation of novel scopoletin derivatives. Chem. Biol. Drug Des., 2018, 91(2), 641-646.
33. Küpeli Akkol, E., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E. and Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers. 2020; 12(7): 1959.
34. Vianna, D.R.; Hamerski, L.; Figueiró, F.; Bernardi, A.; Visentin, L.C.; Pires, E.N.; Teixeira, H.F.; Salbego, C.G.; Eifler-Lima, V.L.; Battastini, A.M.; et al. Selective cytotoxicity and apoptosis induction in glioma cell lines by 5-oxygenated-6,7-methylenedioxycoumarins from Pterocaulon species. Eur. J. Med. Chem. 2012, 57, 268–274.
35. Harvey, R.G.; Cortex, C.; Ananthanarayan, T.P.; Schmolka, S. A new coumarin synthesis and its utilization for the synthesis of polycyclic coumarin compounds with anticarcinogenic properties. J.Org. Chem. 1988, 53, 3936–3943.
36. Kostova, I.; Momekov, G.; Tzanova, T.; Karaivanova, M. Synthesis, characterization, and cytotoxic activity of new lanthanum (III) complexes of bis-coumarins. Bioinorg. Chem.Appl. 2006, 25651, 1–9.
37. Al-Haiza, M.A.; Mostafa, M.S.; El-Kady, M.Y. Synthesis and Biological Evaluation of Some New Coumarin Derivatives. Molecules 2003, 8, 275–286.
38. Musiciki, B.; Periers, A.M.; Laurin, P.; Ferroud, D.; Benedetti, Y.; Lachaud, S.; Chatreaux, F.; Haesslein, J.L.; Lltis, A.; Pierre, C.; et al. Improved antibacterial activities of coumarin antibiotics bearing 5’,5’-dialkylnoviose: Biological activity of RU79115. Bioorg. Med. Chem. Lett. 2000, 10, 1695–1699.
39. Tosun, A.; Kupelı, E.; Yesılada, E. Anti-Inflammatory and Antinociceptive Activity of Coumarins from Seseli gummiferum subsp. corymbosum (Apiaceae). Z. Nat. C. 2009, 64c, 56–62.
40. Fylaktakidou, K.C.; Hadipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Curr. Pharm. Des. 2004, 10, 3813–3833.
41. Jung, J.; Kin, J.; Park, O.S. A convenient one-pot synthesis of 4-hydroxycoumarin, 4-hydroxythiocoumarin, and 4-hydroxyquinolin-2(1H)-one. Synth. Commun. 2001, 31, 1195–1200.
42. Hoult, J.R.; Payá, M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. Gen. Pharmacol. 1996; 27: 713–722.
43. Madhavan, G.R.; Balraju, V.; Malleshasm, B.; Chakrabarti, R.; Lohray, V.B. Novel coumarin derivatives of heterocyclic compounds as lipid-lowering agents. Bioorg. Med. Chem. Lett. 2003; 13: 2547–2551.
44. Moffet, R.S. Central Nervous System Depressants. VII. Pyridyl Coumarins. J. Med. Chem. 1964; 7: 446–449.
45. Paya, M.; Halliwell, B.; Hoult, J.R. Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem. Pharmacol. 1992; 44: 205–214.
46. Stacey, D.; DeGrasse, C.; Johnston, L. Addressing the support needs of women at high risk for breast cancer: Evidence-based care by advanced practice nurses. Oncol. Nurs. Forum. 2002; 29: 77–84.
47. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015; 65: 5–29.
48. Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011; 61: 69–90.
49. Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer. 2001; 94: 153–156.
50. Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 2001, 94, 153–156.
51. Roy, D.; Liehr, J.G. Estrogen, DNA damage and mutations. Mutat. Res. 1999; 424: 107–115.
52. Liehr, J.G. Genotoxicity of the steroidal oestrogens oestrone and oestradiol: Possible mechanism of uterine and mammary cancer development. Hum. Reprod. Update. 2001; 7: 273–281.
53. Russo, J.; Russo, I.H. Genotoxicity of steroidal estrogens. Trends Endocrinol. Metab. 2004; 15: 211–214.
54. Cuzick, J.; Sestak, I.; Forbes, J.F.; Dowsett, M.; Knox, J.; Cawthorn, S.; Saunders, C.; Roche, N.; Mansel, R.E.; von Minckwitz, G.; et al. IBIS-II investigators, Anastrozole for prevention of breast cancer in highrisk postmenopausal women (IBIS-II): An international, double-blind, randomised placebocontrolled trial. Lancet. 2014; 383: 1041–1048.
55. Leonetti, F.; Favia, A.; Rao, A.; Aliano, R.; Paluszcak, A.; Hartmann, R.W.; Carotti, A. Design, synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors. J. Med. Chem. 2004; 47: 6792–6803.
56. Recanatini, M.; Cavalli, A. Comparative molecular field analysis of non-steroidal aromatase inhibitors: An extended model for two different structural classes. Bioorg. Med. Chem. 1998; 6; 377–388.
57. Gotteland, M.; May, E.; May-Levin, F.; Contesso, G.; Delarue, J.C.; Mouriesse, H. Estrogen receptors (ER) in human breast cancer. The significance of a new prognostic factor based on both ER protein and ER mRNA contents. Cancer. 1994; 74: 864–871.
58. Soubeyran, I.; Quenel, N.; Mauriac, L.; Durand, M.; Bonichon, F.; Coindre, J.M. Variation of hormonal receptor, pS2, c-erbB-2 and GSTpi contents in breast carcinomas under tamoxifen: A study of 74 cases. Br. J. Cancer. 1996; 73: 735–743.
59. Devraj, R.; Barrett, J.F.; Fernandez, J.A.; Katzenellenbogen, J.A.; Cushman, M. Design, synthesis, and biological evaluation of ellipticine-estradiol conjugates. J. Med. Chem. 1996; 39: 3367–3374.
60. Krohn, K.; Kulikowski, K.; Leclercq, G. Diethylstilbestrol-linked cytotoxic agents: Synthesis and binding affinity for estrogen receptors. J. Med. Chem. 1989; 32: 1532–1538.
61. Schmidt, B.F.; Hernandez, L.; Rouzer, C.; Czerwinski, G.; Chmurny, G.; Michejda, C.J. Peptide-linked 1,3-dialkyl-3-acyltriazenes: Gastrin receptor directed antineoplastic alkylating agents. J. Med. Chem. 1994; 37: 3812–3818.
62. Varga, J.M.; Asato, N.; Lande, S.; Lerner, A.B. Melanotropin-daunomycin conjugate shows receptor-mediated cytotoxicity in cultured murine melanoma cells. Nature. 1977; 267: 56–58.
63. Nakagawa-Goto, K.; Yamada, K.; Nakamura, S.; Chen, T.H.; Chiang, P.C.; Bastow, K.F.; Wang, S.C.; Spohn, B.; Hung, M.C.; Lee, F.Y.; et al. Antitumor agents. 258. Syntheses and evaluation of dietary antioxidant–taxoid conjugates as novel cytotoxic agents. Bioorg. Med. Chem. Lett. 2007; 17: 5204–5209.
64. Ahmed, N.; Dubuc, C.; Rousseau, J.; Benard, F.; van Lier, J.E. Synthesis, characterization, and estrogen receptor binding affinity of flavone-, indole-, and furan-estradiol conjugates. Bioorg. Med. Chem. Lett. 2007, 17, 3212–3216.
65. Ali, H.; Ahmed, N.; Tessier, G.; van Lier, J.E. Synthesis and biological activities of nucleoside-estradiol conjugates. Bioorg. Med. Chem. Lett. 2006; 16: 317–319.
66. James, D.A.; Swamy, N.; Paz, N.; Hanson, R.N.; Ray, R. Synthesis and estrogen receptor binding affinity of a porphyrin-estradiol conjugate for targeted photodynamic therapy of cancer. Bioorg. Med. Chem. Lett. 1999; 9: 2379–2384.
67. Swamy, N.; James, D.A.; Mohr, S.C.; Hanson, R.N.; Ray, R. An estradiol-porphyrin conjugate selectively localizes into estrogen receptor-positive breast cancer cells. Bioorg. Med. Chem. 2002; 10: 3237–3243.
68. Liu, C.; Strobl, J.S.; Bane, S.; Schilling, J.K.; McCracken, M.; Chatterjee, S.K.; Rahim-Bata, R.; Kingston, D.G. Design, synthesis, and bioactivities of steroid-linked taxol analogues as potential targeted drugs for prostate and breast cancer. J. Nat. Prod. 2004: 67: 152–159.
69. Musa, M.A.; Cooperwood, J.S.; Khan, M.O.F. A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer. Curr. Med. Chem. 2008; 15: 2664–2679.
70. Chen, S.; Cho, M.; Karlsberg, K.; Zhou, D.; Yuan, Y.C. Biochemical and biological characterization of a novel anti-aromatase coumarin derivative. J. Biol. Chem. 2004; 279: 48071–48078.
71. Cui, N.; Lin, D.-D.; Shen, Y.; Shi, J.-G.; Wang, B.; Zhao, M.-Z.; Zheng, L.; Chen, H.; Shi, J.-H. Triphenylethylene-Coumarin Hybrid TCH-5c Suppresses Tumorigenic Progression in Breast Cancer Mainly Through the Inhibition of Angiogenesis. Anti. Cancer Agents Med. Chem. 2019; 19: 1253–1261.