Author(s): Anushri Keshri, Dilip G. Gore, Varaprasad Kolla

Email(s): vkolla@rpr.amity.edu

DOI: 10.52711/0974-360X.2024.00345   

Address: Anushri Keshri, Dilip G. Gore, Varaprasad Kolla*
Amity Institute of Biotechnology, Amity University, Chhattisgarh, Raipur, Chhattisgarh, 493225, India.
Sai Biosystems Private Limited, Nagpur, Maharashtra, 440009, India.
Amity Institute of Biotechnology, Amity University, Chhattisgarh, Raipur, Chhattisgarh, 493225, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 5,     Year - 2024


ABSTRACT:
The global challenge of antibiotic resistance is particularly pronounced in India, where hospital and urban built environments (UBE) serve as prominent reservoirs, amplifying the risk of rapid dissemination because of high population growth and inadequate surveillance. With the uncontrolled use of antibiotics and by natural genetic makeup, the resistance in staphylococci species is on the rise. In this study medical hub region Vidarbha, Maharashtra, India investigated for a resistance profile of coagulase-negative staphylococci (CoNS) once identified by a VITEK 2 and coagulase test. The antibiotic profiling was carried out by the Kirby Bauer disk diffusion method and the % resistance was calculated by statistical analysis to record significance change (P<0.05). According to the results UBE and hospital setting are positive for CoNS and prominently deducted as S. cohnii, S. haemolyticus, S. saprophyticus, S. warneri, and S. aureus. The CoNS species were found to be resistant to many antibiotics but sensitive to few, although the statistical difference was found to be non-significant (P>0.05). A study also highlighted that CoNS species in hospital environments were found to be more resistant towards the range of antibiotics compared to UBE isolates in Vidarbha. In conclusion, it has been put forward that five species of staphylococci are dominating in Vidarbha, and all of them are acquired with drug resistance which demands close surveillance in the coming time to reduce the spread of pathogens.


Cite this article:
Anushri Keshri, Dilip G. Gore, Varaprasad Kolla. Assessing Multi-drug resistant Methicillin-Resistant Coagulase-Negative Staphylococci: Comparative Study in the Tertiary Healthcare Settings and Urban Built Environments of Vidarbha Maharashtra, India. Research Journal of Pharmacy and Technology. 2024; 17(5):2193-0. doi: 10.52711/0974-360X.2024.00345

Cite(Electronic):
Anushri Keshri, Dilip G. Gore, Varaprasad Kolla. Assessing Multi-drug resistant Methicillin-Resistant Coagulase-Negative Staphylococci: Comparative Study in the Tertiary Healthcare Settings and Urban Built Environments of Vidarbha Maharashtra, India. Research Journal of Pharmacy and Technology. 2024; 17(5):2193-0. doi: 10.52711/0974-360X.2024.00345   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-5-41


REFERENCES:
1.    Cella E. Giovanetti M. Benedetti F. Scarpa F. Johnston C. Borsetti A. Ceccarelli G. Azarian T. Zella D, Ciccozzi M. Joining forces against antibiotic resistance: The one health solution. Pathogens. 2023; 12(9): 1074. doi: 10.3390/pathogens12091074.
2.    World Health Organization. Methodological principles of nationally representative surveys as a platform for global surveillance of antimicrobial resistance in human bloodstream infections. 2023; https://www.who.int/publications/i/item/9789240067004.
3.    Choushette BB. Satpute RA. Isolation and characterization of multidrug resistance bacteria from hospital sewage samples, Maharashtra, India. African Journal of Biotechnology. 2022; 21(1): 16–25. https://doi.org/10.5897/AJB2021.17394.
4.    Schinas G. Polyzou E. Spernovasilis N. Gogos C. Dimopoulos G. Akinosoglou K. Preventing Multidrug-Resistant Bacterial Transmission in the Intensive Care Unit with a Comprehensive Approach: A Policymaking Manual. Antibiotics. 2023; 12(8): 1255. doi: 10.3390/antibiotics12081255.
5.    Tomczyk S. Taylor A. Brown A. De Kraker ME. El-Saed A. Alshamrani M. Hendriksen RS. Jacob M. Löfmark S. Perovic O. Impact of the COVID-19 pandemic on the surveillance, prevention and control of antimicrobial resistance: a global survey. Journal of Antimicrobial Chemotherapy. 2021; 76(11): 3045–58. https://doi.org/10.1093/jac/dkab300.
6.    Murray CJ. Ikuta KS. Sharara F. Swetschinski L. Aguilar GR. Gray A. Han C. Bisignano C. Rao P. Wool E. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022; 399(10325): 629–55. https://doi.org/10.1016/S0140-6736(21)02724-0.
7.    Swaminathan S. Prasad J. Dhariwal AC. Guleria R. Misra MC. Malhotra R. Mathur P. Walia K. Gupta S. Sharma A. Antimicrobial Resistance in South East Asia: Strengthening infection prevention and control and systematic surveillance of healthcare associated infections in India. The BMJ. 2017; 358. doi:10.1136/bmj.j3768.
8.    Shah S. Singhal T. Naik R. Thakkar P. Predominance of multidrug-resistant Gram-negative organisms as cause of surgical site infections at a private tertiary care hospital in Mumbai, India. Indian Journal of Medical Microbiology. 2020; 38(3–4): 344–50. https://doi.org/10.4103/ijmm. IJMM_20_284.
9.    Cave R. Cole J. Mkrtchyan HV. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environment International. 2021; 157: 106836. https://doi.org/10.1016/j.envint.2021.106836.
10.    Becker K. Heilmann C. Peters G. Coagulase-negative staphylococci. Clinical Microbiology Reviews. 2014; 27(4): 870–926. doi: 10.1128/CMR.00109-13.
11.    Michalik M. Samet A. Podbielska-Kubera A. Savini V. Międzobrodzki J. Kosecka-Strojek M. Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: A review. Annals of Clinical Microbiology and Antimicrobials. 2020; 19(1): 1–10. https://doi.org/10.1186/s12941-020-00367-x
12.    Hanssen AM. Kjeldsen G. Sollid JUE. Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene transfer? Antimicrobial Agents and Chemotherapy. 2004; 48(1): 285–96. doi: 10.1128/AAC.48.1.285-296.2004.
13.    Omran AS. Hussein AN. Detection of Mec cassette gene among coagulase negative Staphylococci isolated from different Clinical Cases. Research J. Pharm. and Tech. 2019; 12(11): 5595-5599. doi: 10.5958/0974-360X.2019.00969.7.
14.    Narayanan S. Speciation of Clinically Significant Coagulase Negative Staphylococcus (CoNs) and Detection of Reduced Susceptibility of Vancomycin among Methicillin Resistant-CoNs. (Doctoral dissertation, Rajiv Gandhi University of Health Sciences (India) 2020.
15.    Conceicao T. Diamantino F. Coelho C. de Lencastre H. Aires-de-Sousa M. Contamination of public buses with MRSA in Lisbon, Portugal: a possible transmission route of major MRSA clones within the community. PLoS One. 2013; 8(11): e77812. https://doi.org/10.1371/journal.pone.0077812.
16.    Singh S. Charani E. Devi S. Sharma A. Edathadathil F. Kumar A. Warrier A. Shareek P. Jaykrishnan A. Ellangovan K. A road-map for addressing antimicrobial resistance in low-and middle-income countries: lessons learnt from the public private participation and co-designed antimicrobial stewardship programme in the State of Kerala, India. Antimicrobial Resistance and Infection Control. 2021; 10(1): 1–9. https://doi.org/10.1186/s13756-020-00873-9.
17.    Hussein SN. Bdaiwi QO. Auda IG. Kareem AA. Superantigenic Toxin Genes in Some Methicillin Resistant Coagulase Negative Staphylococci. Research J. Pharm. and Tech. 2019; 12(9): 4480-4484. doi: 10.5958/0974-360X.2019.00771.6.
18.    Morris S. Cerceo E. Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiotics. 2020; 9(4):196. https://doi.org/10.3390/antibiotics9040196.
19.    Reynolds D. Burnham JP. Guillamet CV. McCabe M. Yuenger V. Betthauser K. Micek ST. Kollef MH. The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: another pandemic. European Respiratory Review. 2022; 31(166): 220068. https://doi.org/10.1183/16000617.0068-2022.
20.    Pincus DH. Microbial identification using the bioMérieux VITEK® 2 system. Encyclopedia of Rapid Microbiological Methods. 2013; 1–32.
21.    ATCC A. Zone Size Interpretative Chart (as per CLSI and EUCAST) 2018; (3):54–62.
22.    Roberts MC. Soge OO. No D. Comparison of Multi-Drug Resistant Environmental Methicillin-Resistant Staphylococcus aureus Isolated from Recreational Beaches and High Touch Surfaces in Built Environments. Frontiers in Microbiology. 2013; 4:74. doi: 10.3389/fmicb.2013.00074.
23.    Stepanović S. Ćirković I. Djukić S. Vuković D. Švabić-Vlahović M. Public transport as a reservoir of methicillin-resistant staphylococci. Letters in Applied Microbiology. 2008; 47(4): 339–41. doi: 10.1111/j.1472-765x.2008.02436.x.
24.    Seng R. Kitti T. Thummeepak R. Kongthai P. Leungtongkam U. Wannalerdsakun S. Sitthisak S. Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE. 2017; 12(8): 1–13. doi: 10.1371/journal.pone.0184172.
25.    Taneja N. Sharma M. Antimicrobial resistance in the environment: The Indian scenario. Indian Journal of Medical Research. 2019; 149(2): 119–28. doi: 10.4103/ijmr.IJMR_331_18.
26.    Gajendiran A. Abraham J. A Preliminary Study on Pesticide Tolerance and Antibiotic Resistance in Bacterial Strains Isolated From Chlorpyrifos Contaminated Paddy Field of Thanjavur Region. Research J. Pharm. and Tech. 2016; 9(12): 2252-2256. doi: 10.5958/0974-360X.2016.00454.6
27.    Vyas A. Singh K. Kumar G. Prevalence and drug resistance among bacteria of urinary tract infections in females in Punjab, India. Research J. Pharm. and Tech. 2017; 10(2): 575-578. doi: 10.5958/0974-360X.2017.00114.7
28.    Anima N. Dhamodharan S. Nayak B. K. Antibiotic Resistance Pattern Exhibited by Esbl (Extended Spectrum β-Lactamases) in Multidrug Resistant Strains, Escherichia coli. Research J. Pharm. and Tech. 2017; 10(11): 3705-3708. doi: 10.5958/0974-360X.2017.00672.2.
29.    Abbas HA. El-Saysed MA. Ganiny AM. Fattah AA. Antimicrobial Resistance Patterns of Proteus mirabilis isolates from Urinary tract, burn wound and Diabetic foot Infections. Research J. Pharm. and Tech. 2018; 11(1): 249-252. doi: 10.5958/0974-360X.2018.00046.X
30.    Vyas A. Singh K. Kumar G. Prevalence of Uropathogens among Diabetic Patients in Punjab, India. Research J. Pharm. and Tech 2018; 11(5): 2106-2110. doi: 10.5958/0974-360X.2017.00114.7.
31.    N. Nahar, M. Adib, R. B. Rashid. Distribution of antibiotic resistance genes in Acinetobacter species and its genotypic prevalence. Research J. Pharm. and Tech. 2018; 11(6): 2611-2617. doi: 10.5958/0974-360X.2018.00484.5.
32.    Syntem LMO. Dutta H. Neelusree P. Kalyani M. Prevalence of extended spectrum ß-Lactamase and Carbapenemase producing isolates of Klebsiella SPP in a tertiary care hospital. Research J. Pharm. and Tech. 2018; 11(9): 3777-3780. doi: 10.5958/0974-360X.2018.00692.3.
33.    Saleh MM. Sadeq RA. Latif HKA. Abbas HA. Askoura M. Antimicrobial Susceptibility and Resistance Profile of Pseudomonas aeruginosa Isolates from Patients at an Egyptian Hospital. Research J. Pharm. and Tech. 2018; 11(8): 3268-3272. doi: 10.5958/0974-360X.2018.00601.7.
34.    Chaturvedi R. Chandra P. Mittal V. Biofilm Formation by Acinetobacter Spp. in association with Antibiotic Resistance in clinical samples Obtained from Tertiary Care Hospital. Research J. Pharm. and Tech. 2019; 12(8): 3737-3742. doi: 10.5958/0974-360X.2019.00620.6.
35.    Kavitha E. Srikumar R. Muthu G. Inducible Clindamycin Resistance among Clinical Isolates from a Tertiary Care Hospital. Research J. Pharm. and Tech. 2018; 11(11): 5008-5012. doi: 10.5958/0974-360X.2018.00913.7.
36.    Johnson KN. Andreacchio K. Edelstein PH. Detection of methicillin-resistant coagulase-negative staphylococci by the Vitek 2 system. Journal of Clinical Microbiology. 2014; 52(9): 3196-9. doi: 10.1128/JCM.01162-14.
37.    Horstkotte MA. Knobloch JK. Rohde H. Dobinsky S. Mack D. Rapid detection of methicillin resistance in coagulase-negative staphylococci with the VITEK 2 system. Journal of Clinical Microbiology. 2002; 40(9): 3291-5. doi: 10.1128/JCM.40.9.3291-3295.2002.
38.    Martins KB. Ferreira AM. Mondelli AL. Rocchetti TT. LR de S da Cunha MD. Evaluation of MALDI-TOF VITEK® MS and VITEK® 2 system for the identification of Staphylococcus saprophyticus. Future Microbiology. 2018; 13(14): 1603-9. doi: 10.2217/fmb-2018-0195.
39.    Brown DF. Detection of methicillin/oxacillin resistance in staphylococci. Journal of Antimicrobial Chemotherapy. 2001; 48(suppl_1): 65-70. doi: 10.1093/jac/48.suppl_1.65.
40.    Xu Z. Shah HN. Misra R. Chen J. Zhang W. Liu Y. Cutler RR. Mkrtchyan HV. The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK. Antimicrobial Resistance and Infection Control. 2018; 7: 1-0. doi: 10.1186/s13756-018-0367-4.
41.    Carroll KC. Leonard RB. Newcomb-Gayman PL. Hillyard DR. Rapid detection of the Staphylococcal mec A gene from BACTEC blood culture bottles by the polymerase chain reaction. American Journal of Clinical Pathology. 1996; 106(5): 600-5. doi: 10.1093/ajcp/106.5.600.
42.    Havaei SA. Namvar AE. Moghim S. Lari AR. Evaluation of various staphylococcal cassette chromosome mec (SCCmec) types in staphylococcus epidermidis invasive strains from hospitalized patients in Iran Valutazione di tipi diversi di cassetta cromosomica stafilococcica mec (SCCmec) in ceppi invasivi di Staphylococcus epidermidis isolate da pazienti ospedalizzati in Iran. Infezioni in Medicina. 2015; 23(1): 18-22.
43.    Eickhoff TC. Brachman PS. Bennett JV. Brown JF. Surveillance of nosocomial infections in community hospitals. I. Surveillance methods, effectiveness, and initial results. The Journal of Infectious Diseases. 1969; 120(3): 305-17. https://doi.org/10.1093/infdis/120.3.305.
44.    Buetti N. Marschall J. Atkinson A. Kronenberg A. National bloodstream infection surveillance in Switzerland 2008–2014: different patterns and trends for university and community hospitals. Infection Control and Hospital Epidemiology. 2016; 37(9): 1060-7. https://doi.org/10.1017/ice.2016.137
45.    Emori TG. Culver DH. Horan TC. Jarvis WR. White JW. Olson DR. Banerjee S. Edwards JR. Martone WJ. Gaynes RP. Hughes JM. National nosocomial infections surveillance system (NNIS): description of surveillance methods. American Journal of Infection Control. 1991; 19(1): 19-35. https://doi.org/10.1016/0196-6553(91)90157-8


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available