Author(s):
Andrianto Andrianto, Meity Ardiana, Puspa Wardhani, Fita Triastuti, Salva Reverentia Yurista
Email(s):
meityardiana@fk.unair.ac.id
DOI:
10.52711/0974-360X.2024.00352
Address:
Andrianto Andrianto1, Meity Ardiana1*, Puspa Wardhani2, Fita Triastuti1,3, Salva Reverentia Yurista4
1Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
2Department of Pathology Clinic, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
3Master’s Program in Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
4Massachusetts General Hospital, Boston, MA, USA.
*Corresponding Author
Published In:
Volume - 17,
Issue - 5,
Year - 2024
ABSTRACT:
Background and Aim: Cigarette smoking is strongly associated with coronary artery disease and atherosclerosis, both of which are influenced by endothelial dysfunction. Antioxidant therapy has the potential to inhibit the pathogenesis of atherosclerosis. purpose of the study was to assess the antioxidant potential of ß-hydroxybutyrate by examining its effects on eNOS levels and VCAM-1 expression in male Wistar rats exposed to cigarette smoke. Material and methods:. There were 25 Wistar rats involved in this study under a laboratory experiment, which were distributed into five experimental groups. Two control groups were included, with one group receiving no intervention (K-) and the other group exposed to daily exposure to 40 cigarette smoke (K+). The remaining three groups received daily doses of ß-hydroxybutyrate-(R)-1,3-butanediol monoester supplement (DeltaG; KE) at 1.5g/kg/day (P1), 3g/kg/day (P2), and 6g/kg/day (P3), respectively, in addition to daily exposure to 40 cigarette smoke. After a 28-day exposure period, eNOS levels and VCAM-1 expression in the aortic tissue were measured. The data were analyzed using the ANOVA test, followed by Fisher’s LSD post hoc test. Results: The administration of ß-hydroxybutyrate led to a significant increase in eNOS levels in the Wistar rat aorta (p = 0.036; p<0.05). However, there were no huge contrasts seen in VCAM-1 expression (p = 0.426; p>0.05). Conclusion: This study demonstrated that while Wistar rats exposed to cigarette smoke for 28 days experienced an increase in eNOS levels, there was no decrease in VCAM-1 expression.These findings suggest the potential of ß-hydroxybutyrate as a vasodilator in mitigating the effects of cigarette-induced endothelial dysfunction.
Cite this article:
Andrianto Andrianto, Meity Ardiana, Puspa Wardhani, Fita Triastuti, Salva Reverentia Yurista. The effects of Ketone Body β-hydroxybutyrate on eNOS Levels and VCAM-1 Expression in Wistar Rats Exposed to Cigarette Smoke. Research Journal of Pharmacy and Technology. 2024; 17(5):2235-0. doi: 10.52711/0974-360X.2024.00352
Cite(Electronic):
Andrianto Andrianto, Meity Ardiana, Puspa Wardhani, Fita Triastuti, Salva Reverentia Yurista. The effects of Ketone Body β-hydroxybutyrate on eNOS Levels and VCAM-1 Expression in Wistar Rats Exposed to Cigarette Smoke. Research Journal of Pharmacy and Technology. 2024; 17(5):2235-0. doi: 10.52711/0974-360X.2024.00352 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-5-48
REFERENCES:
1. Tg Fatimah Murniwati Tengku Muda, Zul Izhar Mohd Ismail, Shaharudin Abdullah, Nordin Bin Simbak, Mainul Haque. The Effects of Honey on Inflammatory Cells in Cigarette Smoke Affected Lungs in Rats: A Preliminary Study. Research J. Pharm. and Tech. 2014; 7(12): 1382-1386.
2. Adesh Upadhyay, Arun Mishra, Sachin Chaudhury, Pronobesh Chattopadhyay. Mitochondrial Anti-Oxidant Enzymes Caused by Cigarette Smoke in Experimental Wistar Rat. Research J. Pharm. and Tech. 2009; 2(4): 690-693.
3. Hahad O, Arnold N, Prochaska JH, Panova-Noeva M, Schulz A, Lackner KJ, Pfeiffer N, Schmidtmann I, Michal M, Beutel M, Wild PS, Keaney JF Jr, Daiber A, Münzel T. Cigarette Smoking Is Related to Endothelial Dysfunction of Resistance, but Not Conduit Arteries in the General Population-Results From the Gutenberg Health Study. Front Cardiovasc Med. 2021 May 19; 8: 674622. doi: 10.3389/fcvm.2021.674622.
4. Manduteanu I, Simionescu M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? J Cell Mol Med. 2012 Sep;16(9):1978-90. doi: 10.1111/j.1582-4934.2012.01552.x.
5. Smiljic S. The clinical significance of endocardial endothelial dysfunction. Medicina (Kaunas). 2017 Dec; 53(5): 295-302. doi: 10.1016/j.medici.2017.08.003.
6. Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014 Mar;34(3):509-15. doi: 10.1161/ATVBAHA.113.300156.
7. Rajashri Lella, Elizabeth Mary Mathew, Sudheer Moorkoth. Development and Validation of a LC-MS2 Method for the Simultaneous Quantification of Caffeine and Adenosine from DBS. Research J. Pharm. and Tech. 2019; 12(12): 5878-5882. doi: 10.5958/0974-360X.2019.01019.9
8. Kristianningrum Dian Sofiana, Bunga Prihardina, Husnul Khotima, M. Aris Widodo. The Effect of Vitamin C towards Endothelial Dysfunction in CdCl2-induced HUVEC Culture. Research J. Pharm. and Tech. 2018; 11(3): 899-904. doi: 10.5958/0974-360X.2018.00166.X
9. Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017 Jun; 174(12): 1591-1619. doi: 10.1111/bph.13517.
10. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr. 2012 May; 23(4): 222-31. doi: 10.5830/CVJA-2011-068
11. Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022 Mar 20; 23(6): 3346. doi: 10.3390/ijms23063346.
12. H. Girija Bai. A Numerical Simulation of Pressure Variation in Arteries affected by Stenosis. Research J. Pharm. and Tech. 2017; 10(3): 802-810. doi: 10.5958/0974-360X.2017.00152.4
13. C. Uma Devi, R. Bhuvana Vijaya. Study of Jeffrey Fluid Flow in an Inclined tube with Overlapping Stenosis. Research J. Science and Tech. 2017; 9(3): 400-404. doi: 10.5958/2349-2988.2017.00070.5
14. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018 Jan; 100: 1-19. doi: 10.1016/j.vph.2017.05.005.
15. Park KH, Park WJ. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J Korean Med Sci. 2015 Sep; 30(9): 1213-25. doi: 10.3346/jkms.2015.30.9.1213.
16. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci U S A. 1996 Aug 20; 93(17): 9114-9. doi: 10.1073/pnas.93.17.9114.
17. Prarthana V Rewatkar, Ganesh R Kokil. QSAR Studies of Novel 1- and 8-Substituted-3-Furfuryl Xanthines: An Adenosine Receptor Antagonist. Asian J. Research Chem. 2010; 3(2): 416-420.
18. Kavitha. D. Carotid Artery Stenosis. International Journal of Advances in Nursing Management. 2020; 8(1) DOI : 10.5958/2454-2652.2020.00024.4
19. M. Chitra, D. Karthikeyan. Mathematical Modelling on Oscillatory flow of Blood in a stenosed artery under the influence of Magnetic field with Variable Viscosity. Research J. Science and Tech. 2017; 9(3): 427-434. doi: 10.5958/2349-2988.2017.00075.4
20. Yurista SR, Matsuura TR, Silljé HHW, Nijholt KT, McDaid KS, Shewale SV, Leone TC, Newman JC, Verdin E, van Veldhuisen DJ, de Boer RA, Kelly DP, Westenbrink BD. Ketone Ester Treatment Improves Cardiac Function and Reduces Pathologic Remodeling in Preclinical Models of Heart Failure. Circ Heart Fail. 2021 Jan; 14(1): e007684. doi: 10.1161/CIRCHEARTFAILURE.120.007684.
21. Rojas-Morales P, Pedraza-Chaverri J, Tapia E. Ketone bodies, stress response, and redox homeostasis. Redox Biol. 2020 Jan; 29: 101395. doi: 10.1016/j.redox.2019.101395.
22. Nishida K. Recent Advances in Lipid-Based Drug Delivery. Pharmaceutics. 2021; 13(7): 926. https://doi.org/10.3390/pharmaceutics13070926
23. Ardiana M, Susetyo Pikir B, Santoso A, Oky Hermawan H, Jibril Al-Farabi M. The effect of subchronic cigarette smoke exposure on oxidative stress parameters and endothelial nitric oxide synthase in a rat aorta. ARYA Atheroscler. 2021 Jul; 17(4): 1-7. doi: 10.22122/arya.v17i0.2150.
24. Katusic ZS, Austin SA. Endothelial nitric oxide: protector of a healthy mind. Eur Heart J. 2014 Apr; 35(14): 888-94. doi: 10.1093/eurheartj/eht544
25. Costa ED, Rezende BA, Cortes SF, Lemos VS. Neuronal Nitric Oxide Synthase in Vascular Physiology and Diseases. Front Physiol. 2016 Jun 2; 7: 206. doi: 10.3389/fphys.2016.00206.
26. He Z, Chen Y, Hou C, He W, Chen P. Cigarette Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction. Med Sci Monit. 2017 Jul 2; 23: 3224-3231. doi: 10.12659/msm.902746.
27. Haces ML, Hernández-Fonseca K, Medina-Campos ON, Montiel T, Pedraza-Chaverri J, Massieu L. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp Neurol. 2008 May; 211(1): 85-96. doi: 10.1016/j.expneurol.2007.12.029.
28. El-Agamy DS, Nader MA. Attenuation of oxidative stress-induced vascular endothelial dysfunction by thymoquinone. Exp Biol Med (Maywood). 2012 Sep; 237(9): 1032-8. doi: 10.1258/ebm.2012.012107.
29. Abdelghany TM, Ismail RS, Mansoor FA, Zweier JR, Lowe F, Zweier JL. Cigarette smoke constituents cause endothelial nitric oxide synthase dysfunction and uncoupling due to depletion of tetrahydrobiopterin with degradation of GTP cyclohydrolase. Nitric Oxide. 2018 Jun 1; 76: 113-121. doi: 10.1016/j.niox.2018.02.009.
30. Tousoulis D, Kampoli AM, Papageorgiou N, Androulakis E, Antoniades C, Toutouzas K, Stefanadis C. Pathophysiology of atherosclerosis: the role of inflammation. Curr Pharm Des. 2011 Dec; 17(37): 4089-110. doi: 10.2174/138161211798764843.
31. Soejima E, Ohki T, Kurita Y, Yuan X, Tanaka K, Kakino S, Hara K, Nakayama H, Tajiri Y, Yamada K. Protective effect of 3-hydroxybutyrate against endoplasmic reticulum stress-associated vascular endothelial cell damage induced by low glucose exposure. PLoS One. 2018 Mar 19; 13(3): e0191147. doi: 10.1371/journal.pone.0191147.
32. Li Y, Zhang X, Ma A, Kang Y. Rational Application of β-Hydroxybutyrate Attenuates Ischemic Stroke by Suppressing Oxidative Stress and Mitochondrial-Dependent Apoptosis via Activation of the Erk/CREB/eNOS Pathway. ACS Chem Neurosci. 2021 Apr 7; 12(7): 1219-1227. doi: 10.1021/acschemneuro.1c00046.
33. Ji LW, Deng Y, Li T. [Effect of Ketone Body β-Hydroxybutyrate to Attenuate Inflammation-Induced Mitochondrial Oxidative Stress in Vascular Endothelial Cells]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021 Nov; 52(6): 954-959. Chinese. doi:10.12182/20211160202.
34. McCarthy CG, Chakraborty S, Singh G, Yeoh BS, Schreckenberger ZJ, Singh A, Mell B, Bearss NR, Yang T, Cheng X, Vijay-Kumar M, Wenceslau CF, Joe B. Ketone body β-hydroxybutyrate is an autophagy-dependent vasodilator. JCI Insight. 2021 Oct 22; 6(20): e149037. doi: 10.1172/jci.insight.149037.
35. Uchihashi M, Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Tateishi S, Ono K, Yamanaka R, Hato D, Fushimura Y, Honda S, Fukai K, Higuchi Y, Ogata T, Iwai-Kanai E, Matoba S. Cardiac-Specific Bdh1 Overexpression Ameliorates Oxidative Stress and Cardiac Remodeling in Pressure Overload-Induced Heart Failure. Circ Heart Fail. 2017 Dec; 10(12): e004417. doi: 10.1161/CIRCHEARTFAILURE.117.004417.
36. Krebs P, Fan W, Chen YH, Tobita K, Downes MR, Wood MR, Sun L, Li X, Xia Y, Ding N, Spaeth JM, Moresco EM, Boyer TG, Lo CW, Yen J, Evans RM, Beutler B. Lethal mitochondrial cardiomyopathy in a hypomorphic Med30 mouse mutant is ameliorated by ketogenic diet. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19678-82. doi: 10.1073/pnas.1117835108.
37. Guo Y, Zhang C, Shang FF, Luo M, You Y, Zhai Q, Xia Y, Suxin L. Ketogenic Diet Ameliorates Cardiac Dysfunction via Balancing Mitochondrial Dynamics and Inhibiting Apoptosis in Type 2 Diabetic Mice. Aging Dis. 2020 Mar 9; 11(2): 229-240. doi: 10.14336/AD.2019.0510.
38. Qi J, Gan L, Fang J, Zhang J, Yu X, Guo H, Cai D, Cui H, Gou L, Deng J, Wang Z, Zuo Z. Beta-Hydroxybutyrate: A Dual Function Molecular and Immunological Barrier Function Regulator. Front Immunol. 2022 Jun 16; 13: 805881. doi: 10.3389/fimmu.2022.805881.
39. Pinto A, Bonucci A, Maggi E, Corsi M, Businaro R. Anti-Oxidant and Anti-Inflammatory Activity of Ketogenic Diet: New Perspectives for Neuroprotection in Alzheimer's Disease. Antioxidants (Basel). 2018 Apr 28; 7(5): 63. doi: 10.3390/antiox7050063.
40. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001 Nov 27; 104(22): 2673-8. doi: 10.1161/hc4601.099485.
41. Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal. 2021 Nov 20; 35(15): 1291-1307. doi: 10.1089/ars.2021.0027.
42. Huang Z, Wu M, Zeng L, Wang D. The Beneficial Role of Nrf2 in the Endothelial Dysfunction of Atherosclerosis. Cardiol Res Pract. 2022 May 12; 2022: 4287711. doi: 10.1155/2022/4287711.
43. Meroni E, Papini N, Criscuoli F, Casiraghi MC, Massaccesi L, Basilico N, Erba D. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies. Nutrients. 2018 Feb 22; 10(2): 250. doi: 10.3390/nu10020250.
44. Greco T, Glenn TC, Hovda DA, Prins ML. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J Cereb Blood Flow Metab. 2016 Sep; 36(9): 1603-13. doi: 10.1177/0271678X15610584.