Author(s):
Rohan Pal, Rajat Subhra Saha, Sudipta Dey, Sumana Das
Email(s):
pal.rohan1995@gmail.com
DOI:
10.52711/0974-360X.2024.00459
Address:
Rohan Pal1*, Rajat Subhra Saha2, Sudipta Dey2, Sumana Das3
1Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India.
2Department of Pharmacology, Global College of Pharmaceutical Technology, Krishnanagar, Nadia, West Bengal 741102, India.
3Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 6,
Year - 2024
ABSTRACT:
As an effective and widely used anti-cancer medication, doxorubicin (DOX) also has the side effect of causing dose-dependent organ toxicity, primarily cardiotoxicity. Recent research has shown that the main pathogenic factors causing cardiomyopathy are oxidative stress, inflammation, and consequent cardiomyocyte death. Due to the shortcomings of currently available adjuvants in terms of pharmacoeconomics, short-term efficacy, and inherent adverse effects, the clinical application of classical cytotoxic medicines continues to be a preferred mode of treatment for cancer. As anticancer, chemopreventive, and cardioprotective agents, numerous dietary plants and mushrooms of natural origin have recently attracted interest. The current analysis provides an overview ofthe cardioprotective effect of some naturally occurring resources against experimental model-induced cardiotoxicity caused by DOX. Additionally, the review article covers the geographical availability, biological source, chemical constituents, and pharmacological actions associated with the pharmaceutical development of natural resources and their prospective application for additional drug development. These substances could be a valuable source of alternative adjuvants for chemotherapy used in medication development that are optimal, affordable, and safe.
Cite this article:
Rohan Pal, Rajat Subhra Saha, Sudipta Dey, Sumana Das. A Review on the Role of some Cardioprotective Natural Resources in Mitigating Doxorubicin-Induced Cardiotoxicity. Research Journal of Pharmacy and Technology. 2024; 17(6):2933-2. doi: 10.52711/0974-360X.2024.00459
Cite(Electronic):
Rohan Pal, Rajat Subhra Saha, Sudipta Dey, Sumana Das. A Review on the Role of some Cardioprotective Natural Resources in Mitigating Doxorubicin-Induced Cardiotoxicity. Research Journal of Pharmacy and Technology. 2024; 17(6):2933-2. doi: 10.52711/0974-360X.2024.00459 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-6-78
REFERENCES:
1. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019; Dec; 576(7785): 51-60. doi: 10.1038/s41586-019-1797-8.
2. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005; Apr 9-15; 365(9467): 1333-46. doi: 10.1016/S0140-6736(05)61032-X.
3. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999; Sep; 104(6): 787-94. doi: 10.1172/JCI7231.
4. Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, Maddipati KR, Parinandi NL. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal. 2012; Jul 15; 17(2): 327-39. doi: 10.1089/ars.2012.4600.
5. Oz AT, Kafkas E. Phytochemicals in Fruits and Vegetables [Internet]. Superfood and Functional Food - An Overview of Their Processing and Utilization. InTech; 2017.
6. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000; Sep; 130(9): 2243-50. doi: 10.1093/jn/130.9.2243.
7. Prasath GS, Subramanian SP. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2011; Oct 15; 668(3): 492-6. doi: 10.1016/j.ejphar.2011.07.021.
8. Prasath GS, Pillai SI, Subramanian SP. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur J Pharmacol. 2014; Oct 5; 740: 248-54. doi: 10.1016/j.ejphar.2014.06.065. Epub 2014 Jul 24.
9. Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol. 1996; Jun; 6(3): 402-6. doi: 10.1016/s0959-440x(96)80061-3.
10. Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem. 2000; Dec 14; 43(25): 4759-67. doi: 10.1021/jm001044l.
11. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004; Nov; 3(11): 935-49. doi: 10.1038/nrd1549.
12. Sinha S, Perdomo G, Brown NF, O'Doherty RM. Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem. 2004; Oct 1; 279(40): 41294-301. doi: 10.1074/jbc.M406514200.
13. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; Dec 16; 65(1-2): 55-63. doi: 10.1016/0022-1759(83)90303-4.
14. Hong NY, Cui ZG, Kang HK, Lee DH, Lee YK, Park DB. p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells. Biochem Biophys Res Commun. 2012; Feb 24; 418(4): 720-4. doi: 10.1016/j.bbrc.2012.01.085.
15. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015; May 14; 58(9): 4066-72. doi: 10.1021/acs.jmedchem.5b00104.
16. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J. (1998), Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19: 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
17. Chanon S, Durand C, Vieille-Marchiset A, Robert M, Dibner C, Simon C, Lefai E. Glucose Uptake Measurement and Response to Insulin Stimulation in In Vitro Cultured Human Primary Myotubes. J Vis Exp. 2017; Jun 25; (124): 55743. doi: 10.3791/55743.
18. Nedachi T, Kanzaki M. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes. Am J Physiol Endocrinol Metab. 2006; Oct; 291(4): E817-28. doi: 10.1152/ajpendo.00194.2006.
19. Sarabia V, Ramlal T, Klip A. Glucose uptake in human and animal muscle cells in culture. Biochem Cell Biol. 1990; Feb; 68(2): 536-42. doi: 10.1139/o90-076.
20. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; Mar 1; 46(1-3): 3-26. doi: 10.1016/s0169-409x(00)00129-0.
21. Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008; Feb 28; 51(4): 817-34. doi: 10.1021/jm701122q.
22. Pires DEV, Kaminskas LM, Ascher DB. Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. Methods Mol Biol. 2018; 1762: 271-284. doi: 10.1007/978-1-4939-7756-7_14.
23. Lagorce, D. et al. In ADMET for Medicinal Chemists: A Practical Guide (eds K. Tsaioun andamp; S. A. Kates) (John Wiley andamp; Sons, Inc., 2010).
24. Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. 2017; Apr 11; 7: 46277. doi: 10.1038/srep46277.
25. Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Haynes JM, Trevaskis NL, Chan LJ, Sloan EK, Finnin BA, Williamson M, Velkov T, Williams ED, Kelly BD, Owen DJ, Porter CJ. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm. 2015; Feb 2; 12(2): 432-43. doi: 10.1021/mp500531e. Epub 2015 Jan 20.
26. Isvoran A, Louet M, Vladoiu DL, Craciun D, Loriot MA, Villoutreix BO, Miteva MA. Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today. 2017; Feb; 22(2): 366-376. doi: 10.1016/j.drudis.2016.09.015.
27. Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P. In silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Front Pharmacol. 2019; Apr 24; 10: 434. doi: 10.3389/fphar.2019.00434.
28. Cherrington AD. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes. 1999; May; 48(5): 1198-214. doi: 10.2337/diabetes.48.5.1198.
29. O'Brien RM, Granner DK. Regulation of gene expression by insulin. Biochem J. 1991; Sep 15; 278 (Pt 3)(Pt 3): 609-19. doi: 10.1042/bj2780609.
30. Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol. 1992; 54: 885-909. doi: 10.1146/annurev.ph.54.030192.004321.
31. O'Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA. Insulin-regulated gene expression. Biochem Soc Trans. 2001; Aug; 29(Pt 4): 552-8. doi: 10.1042/bst0290552.
32. Stalmans W, Bollen M, Toth B, Gergely P. Short-term hormonal control of protein phosphatases involved in hepatic glycogen metabolism. Adv Enzyme Regul. 1990; 30: 305-27. doi: 10.1016/0065-2571(90)90024-v.
33. Roach PJ. Glycogen synthase and glycogen synthase kinases. Curr Top Cell Regul. 1981; 20: 45-105. doi: 10.1016/b978-0-12-152820-1.50006-7.
34. Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015; May 14; 58(9): 4066-72. doi: 10.1021/acs.jmedchem.5b00104. Epub 2015 Apr 22.