Author(s): Haeria Doloking, Nur Syamsi Dhuha, Nurjannah

Email(s): haeria.doloking@uin-alauddin.ac.id

DOI: 10.52711/0974-360X.2024.00479   

Address: Haeria Doloking*, Nur Syamsi Dhuha, Nurjannah
Department of Pharmacy, Faculty of Medical and Health Sciences, UIN Alauddin Makassar, Romang Polong, Gowa, 92118, South Sulawesi, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 7,     Year - 2024


ABSTRACT:
Piroxicam is one of the most potent anti-inflammatory non-steroidal drugs in the treatment of musculoskeletal, bone, and joint injuries including ankylosing spondylitis, osteoarthritis, and rheumatoid arthritis. Piroxicam exhibits poor solubility and slow onset of action in biological subjects. An oral dosage form of piroxicam with enhanced aqueous solubility is desired to enable a faster onset of action and its use for mild-to-medium-level acute pain relief. Cocrystal formation aims to increase piroxicam's solubility and the onset of action, thereby improving therapeutic effectiveness. Piroxicam-malic acid cocrystal is formed by solvent drop grinding method with methanol as a solvent. The preliminary characterization of piroxicam and cocrystal particles was determined by Scanning Electron Microscope, Differential Scanning Calorimetry, X-ray Diffractometry, and Fourier Transform Infra-Red Spectrophotometry to confirm the formation of hydrogen bonds. Dissolution studies of piroxicam and its cocrystals were performed in pH 1,2 hydrochloric acid solutions at 37°C. The microscopic analysis showed the formation of a new crystalline phase, and the thermal analysis showed a shift in the melting point to lower which confirms increased solubility due to the formation of the crystalline phase. Crystallographic analysis shows a new unique peak which indicates the formation of a new crystal lattice in the form of a triclinic lattice. This is also confirmed by the results of functional group analysis which shows the formation of heterosynthonic supramolecular hydrogen bonds between the amide group of piroxicam and the carboxylic group of malic acid. The greater dissolution rate is reached by piroxicam-malic acid (1:2) cocrystal.


Cite this article:
Haeria Doloking, Nur Syamsi Dhuha, Nurjannah. Formation, Characterization and In vitro Dissolution studies of Piroxicam-Malic Acid Cocrystals. Research Journal of Pharmacy and Technology.2024; 17(7):3061-6. doi: 10.52711/0974-360X.2024.00479

Cite(Electronic):
Haeria Doloking, Nur Syamsi Dhuha, Nurjannah. Formation, Characterization and In vitro Dissolution studies of Piroxicam-Malic Acid Cocrystals. Research Journal of Pharmacy and Technology.2024; 17(7):3061-6. doi: 10.52711/0974-360X.2024.00479   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-12


REFERENCES:
1.    Weyna DR, Cheney ML, Shan N, et al. Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol Pharm. 2012; 9(7): 2094-2102. doi:10.1021/mp300169c
2.    Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012; 2012(100 mL):1-10. doi:10.5402/2012/195727
3.    FDA. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System Guidance for Industry.; 2017; Accessed November 3: 2018. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm
4.    Shah P, Goodyear B, Michniak-kohn BB. Review Article A review : Enhancement of solubility and oral bioavailability of poorly soluble drugs. Adv. Pharm. J. 2017; 2017; 2(5): 161-173.
5.    Kakran M, Li L, Muller R. Overcoming the challenge of poor drug solubility. Pharm Eng Off Mag ISPE. 2012; 32(4): 1-7.
6.    Dhillon B, Goyal NK, Malviya R, Sharma PK. Poorly water soluble drugs: Change in solubility for improved dissolution characteristics a review. Glob J Pharmacol. 2014; 8(1): 26-35. doi:10.5829/idosi.gjp.2014.8.1.81201
7.    Krishnaiah YS. Pharmaceutical Technologies for Enhancing Oral Bioavailability of Poorly Soluble Drugs. J Bioequiv Availab. 2010; 02(02): 28-36. doi:10.4172/jbb.1000027
8.    Sathisaran I, Dalvi SV. pharmaceutics Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics. Published online 2014. doi:10.3390/pharmaceutics10030108
9.    Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014; 9(6): 304-316. doi:10.1016/j.ajps.2014.05.005
10.    Yuliandra Y, Zaini E, Syofyan S, et al. Cocrystal of ibuprofen–nicotinamide: Solid-state characterization and in vivo analgesic activity evaluation. Sci Pharm. 2018; 86(2): 23. doi:10.3390/scipharm86020023
11.    Dutt B, Choudhary M, Budhwar V. Enhancement of Stability profile of Aspirin through Cocrystallization Technique. Res J Pharm Technol. 2022; 15(2): 768-772. doi:10.52711/0974-360X.2022.00128
12.    Ainurofiq A, Mauludin R, Mudhakir D, et al. Improving mechanical properties of desloratadine via multicomponent crystal formation. Eur J Pharm Sci. 2018; 111(July 2018): 65-72. doi:10.1016/j.ejps.2017.09.035
13.    Bak A, Gore A, Yanez E, et al. The Co‐Crystal Approach to Improve the Exposure of a Water‐Insoluble Compound: AMG 517 Sorbic Acid Co‐Crystal Characterization and Pharmacokinetics. J Pharm Sci. 2008; 97(9): 3942-3956. doi:10.1002/jps.21280
14.    Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer Selection in Pharmaceutical Cocrystal Development: a Case Study of a Meloxicam Aspirin Cocrystal That Exhibits Enhanced Solubility and Pharmacokinetics. J Pharm Sci. 2011; 100(6): 2172-2181. doi:10.1002/jps.22434
15.    Karagianni A, Malamatari M, Kachrimanis K. pharmaceutics Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics. 2018; 10(18). doi:10.3390/pharmaceutics10010018
16.    Izutsu K, Koide T, Takata N, et al. Characterization and Quality Control of Pharmaceutical Cocrystals. Chem Pharm Bull (Tokyo). 2016; 64(10): 1421-1430. doi:10.1021/acs.analchem.5b03384
17.    Gadade DD, Pekamwar SS. Pharmaceutical cocrystals: Regulatory and strategic aspects, design and development. Adv Pharm Bull. 2016; 6(4): 479-494. doi:10.15171/apb.2016.062
18.    Kumar S, Nanda A. Pharmaceutical Cocrystals : An Overview. Indian J. Pharm. Sci. 2017; 79(6): 858-871. doi:10.4172/pharmaceutical-sciences.1000302
19.    Schultheiss N, Newman A. Pharmaceutical Cocrystals and Their Physicochemical Properties Nate. Cryst Growth Des. 2009; 9(6): 2950-2967.
20.    Najar AA, Azim Y. Pharmaceutical co-crystals: A new paradigm of crystal engineering. J Indian Inst Sci. 2014; 94(1): 45-67.
21.    Zalte AG, Saudagar RB. Preparation and Characterization of Flurbiprofen Co-crystals By Using Factorial Design. Asian J Res Chem. 2018; 11(1): 166. doi:10.5958/0974-4150.2018.00034.2
22.    Barzegar-Jalali M, Ghanbarzadeh S, Adibkia K, et al. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers. BioImpacts. 2014; 4(3): 141-148. doi:10.15171/bi.2014.007
23.    Panzade P, Shendarkar G, Shaikh S, Rathi PB. Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation. Adv Pharm Bull. 2017;7(3):399-408. doi:10.15171/apb.2017.048
24.    Suryawanshi S, Sonawane J, Shaikh S, Shaikh H. Design preparation and formulation of piroxicam solid dispersion. Asian J Pharm Technol. 2021; 11(1): 27-35. doi:10.5958/2231-5713.2021.00005.2
25.    Suhesti TS, Fudholi A, Martien R, Martono S. Pharmaceutical nanoparticle technologies: An approach to improve drug solubility and dissolution rate of Piroxicam. Res. J. Pharm. Technol. 2017; 10(4): 968. doi:10.5958/0974-360X.2017.00176.7
26.    Oracz M, Maniukiewicz W, Główka M. Solvent-drop grinding as an alternative tool for preparation of cocrystals. Acta Crystallogr Sect A Found Crystallogr. 2010; 66(a1): s292-s292. doi:10.1107/s0108767310093311
27.    Jones, William, Motherwell, W.D. Samuel, and Trask A V. Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement. MRS Bull. 2006; 31.
28.    Abd Rahim S, Tan CC, Ramle NA. Carbamazepine-fumaric acid co-crystal screening using solution based method. In: MATEC Web of Conferences. Vol 69. EDP Sciences; 2016. doi:10.1051/matecconf/20166903003
29.    El-Zhry El-Yafi AK, El-Zein H. Technical crystallization for application in pharmaceutical material engineering: Review article. Asian J. Pharm. Sci. 2014; 10(4): 283-291. doi:10.1016/j.ajps.2015.03.003
30.    Maciej Serda, Becker FG, Cleary M, et al. Preparation and solid state characterization of paclitaxel cocrystals. G. Balint, Antala B, Carty C, Mabieme J-MA, Amar IB, Kaplanova A, eds. Res. J. Pharm. Technol. 2014; 7(1): 64-69. doi:10.2/JQUERY.MIN.JS
31.    Thimmasetty J, Shashank NN, Abdul Raheem T, Shwetha SKK, Tanmoy G. Modafinil cocrystals for altered physicochemical properties. Res J Pharm Technol. 2021; 14(9): 4891-4896. doi:10.52711/0974-360X.2021.00850
32.    Budiman A, Megantara S, Saraswati P. Synthesize Glibenclamide-Ascorbic Acid Cocrystal Using Solvent Evaporation Method to Increase Solubility and Dissolution Rate of Glibenclamide. Res J Pharm Technol. 2019; 12(12): 5805-5810. doi:10.5958/0974-360X.2019.01005.9
33.    Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013; 453(1): 101-125. doi:10.1016/j.ijpharm.2012.10.043

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available