Author(s):
Gunpreet Kaur, Ravinder Sharma, Parveen Bansal, Ramandeep Kaur, Vikas Gupta
Email(s):
vikas_4308@rediffmail.com
DOI:
10.52711/0974-360X.2024.00480
Address:
Gunpreet Kaur1, Ravinder Sharma2, Parveen Bansal1, Ramandeep Kaur1, Vikas Gupta1*
1University Center of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
2Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
Cancer is one of the most prevalent diseases and is increasing progressively due to our contemporary lifestyle. It is essential to find novel approaches to prevent and treat it efficiently. In order to treat cancer, herbal medications play a crucial role by obstructing important biological pathways. The current investigation was conducted to find out cytotoxic activity of four isolated compounds from root extracts of Roscoea purpurea. The isolated compounds were screened for cytotoxic activity through molecular docking studies using protein target 6G9X and 4DDR followed by in vitro cytotoxic using lymphoma cell lines i.e. Jurkat and u937. The molecular docking results showed that Lupenone and Sitostanol caffeate have cytotoxic activity. Lupenone and Sitostanol caffeate showed the higher/similar selectivity score as compared to standard drug Methotrexate. In consonance to the results of molecular docking, appreciable in vitro cytotoxic activity of Lupenone and Sitostanol caffeate has been observed through MTT assay. From results, it was observed that both the compounds showed decreased cell viability and inhibition of cell growth in a dose dependent manner. However more studies are needed to determine the exact mechanism by which these phytochemical constituents isolated from Roscoea purpurea interact with receptors to exert the cytotoxic activity.
Cite this article:
Gunpreet Kaur, Ravinder Sharma, Parveen Bansal, Ramandeep Kaur, Vikas Gupta. Docking tools provide perfect leads for Cytotoxic activity of Lupenone and Sitostanol caffeate from root extracts of Roscoea purpurea. Research Journal of Pharmacy and Technology.2024; 17(7):3067-2. doi: 10.52711/0974-360X.2024.00480
Cite(Electronic):
Gunpreet Kaur, Ravinder Sharma, Parveen Bansal, Ramandeep Kaur, Vikas Gupta. Docking tools provide perfect leads for Cytotoxic activity of Lupenone and Sitostanol caffeate from root extracts of Roscoea purpurea. Research Journal of Pharmacy and Technology.2024; 17(7):3067-2. doi: 10.52711/0974-360X.2024.00480 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-13
REFERENCES:
1. Fares J, et al. Molecular principles of metastasis: a hallmark of cancer revisited. Signal transduction and Targeted Ther. 2020; Mar 12; 5(1): 1-7. doi: 10.1038/s41392-020-0134-x
2. Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A A Canc J Clin. 2021 May; 71(3): 209-49. doi: 10.3322/caac.21660
3. Cao M, Chen W. Interpretation of global cancer statistics in GLOBOCAN 2020. Chin J Med Frontiers. 2021; 13(3): 63-9. doi: 10.12037/YXQY.2021.03-10
4. Bansal P, et al. Dietary phytochemicals in cell cycle arrest and apoptosis-an insight. J Drug Deliv Therm. 2012; Mar 13; 2(2): 8-17. doi:10.22270/jddt.v2i2.121
5. Gyawali R, Kim KS. Anticancer phytochemicals of citrus fruits-A review. J Anim Res. 2014; 4(1): 85-95. doi: 10.5958/2277940X.2014.00079.5
6. Patra S, et al. Chemical diversity of dietaryphytochemicals and their mode of chemoprevention. Biotechnol Rep. 2021; Jun 1; 30: e00633. doi: 10.1016/j.btre.2021.e00633
7. Ntlhamu MI, et al. Exploring the anti-HIV-1 reverse transcriptase, anti-inflammatory,anti-cancer activities and cytotoxicity of two fermented commercial herbal concoctions sold in LimpopoProvince of South Africa. BMC Complement Med Ther. 2021; May 26; 21(1): 1-2. doi:10.1186/s12906-021-03321-2
8. Aggarwal BB, et al. From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opinion Ther Targets. 2006; Feb 1; 10(1): 87-118. doi:10.1517/14728222.10.1.87
9. Russo GL. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochempharmacol. 2007; Aug 15; 74(4): 533-44. doi:10.1016/j.bcp.2007.02.014
10. Hemalatha K, et al. Synthesis, in silico molecular docking study and anti-bacterial evaluation of some novel 4-anilino quinazolines. Asian Journal of Pharmaceutical Research. 2018; Oct 24; 8(3): 125-32. doi: 10.5958/2231-5691.2018.00022.9.
11. Tripathi J, et al. Molecular Docking and Toxicity Analysis of Novel Atorvastatin Structural Analogues with HMG-CoA Reductase. Asian J. Research Chem. 2012; March; 5(3): 386-89.
12. Nandhini S, et al. Docking of hematoporphyrin on various anticancer drugs targeting enzymes. Asian Journal of Pharmaceutical Research. 2016; Oct 18; 6(3): 123-30. doi:10.5958/2231-5691.2016.00019.8
13. Kaur G, et al. Compliance level of textual therapeutic usage of kakoli-containing formulations with ethnomedicinal survey and modern system of medicine. Imam J Appl Sci. 2019; Jul 1; 4(2): 62-8. doi: 10.4103/ijas.ijas_1_19.
14. Kaur G, et al. Isolation of lupenone (18-Lupen-3-one) from Roscoea purpurea root extract. Bangladesh J Med Sci. 2020; Oct 4; 19(4): 692-96. doi:10.3329/bjms.v19i4.46627
15. Kaur G, et al. Isolation of Catechins from Roscoea purpurea. J Young Pharm. 2020; Dec; 12(4): 389-91. doi: 10.5530/jyp.2020.12.99
16. Kaur G, et al. Isolation of Chemical Marker from Roscoea purpurea: First Report. IJSRM. 2020; April; 15(2): 1-11.
17. Trott O, Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multi-threading. J Comp Chem. 2010; Jan 30; 31(2): 455-61. doi:10.1002/jcc.21334
18. Burley SK, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021; Jan 8; 49(D1): D437-D451. doi:10.1093/nar/gkaa1038
19. Thomas R, et al. In silico Docking Approach of Coumarin Derivatives as an Aromatase Antagonist. Research Journal of Pharmacy and Technology. 2015; Jan 1; 8(12): 1673-8. doi:10.5958/0974-360X.2015.00302.9.
20. Nair NP, et al. In-silico docking studies of coumarin derivatives as caspase 8 and PDE4 antagonist. Research Journal of Pharmacy and Technology. 2016; 9(12): 2199-204. doi:10.5958/ 0974-360X.2016.00445.5
21. Biovia DS, et al. Dassault Systemes, 2020. Release 2020. Available on https://discover.3ds.com/discovery-studio-visualizer-download
22. Laskowski RA, et al. PROCHECK: Validation of protein-structure coordinates. Int Tables Crystallogr. 2012; 684-87. doi:10.11 07/97809553 602060000882
23. Ramachandran GN, et al. Stereochemistry of polypeptide chain configurations. J Mol Bio. 1963; 7(1):95-9. doi:10.1016/S0022-2836(63)80023-6
24. Boyle NM, et al. Open Babel: An open chemical toolbox. J Cheminform. 2011; Dec; 3(1): 1-4. doi:10.1186/1758-2946-3-33
25. Lipinski CA, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; Dec 1; 64: 4-17. doi: 10.1016/j.addr.2012.09.019
26. Niles AL, et al. Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discov. 2008; Jun 1; 3(6): 655-69. doi.org/10.1517/17460441.3.6.655
27. Dureja H. Reverse phase high-performance liquid chromatographic estimation and in vitro cytotoxicity of Boswellic acids on a-375 melanoma cancer cell lines. Asian Journal of Pharmaceutical Analysis. 2018; June 2; 8(1): 13-9. doi:10.5958/2231-5675.2018.00003.0
28. Paul S, Saha D. Cytotoxic activity of ethanol extract of Leea indica leaf. Asian Journal of Research in Pharmaceutical Science. 2012; 2(4): 137-9.
29. Meerloo JV, et al. Cell sensitivity assays: the MTT assay. In Cree I (ed) Cancer cell culture, vol. 731. Humana Press, Springer Nature, Switzerland, AG, 2011
30. Nisha H, Karavadi B. Computational analysis to identify the drug targets and their lead molecules in pancreatic cancer. Research Journal of Pharmacy and Technology. 2017; Sept 22; 10(6): 1708-16. doi:10.5958/0974-360X.2017.00302.X
31. Bastos IV et al. Use of GC/MS to identify chemical constituents and cytotoxic activity of the leaves of Phoradendron mucronatum and Phoradendron microphyllum (Viscaceae). Anais da Academia Brasileira de Ciencias. 2017; Apr; 89: 991-01. doi:10.1590/0001-3765201720160586