Author(s):
Hasyrul Hamzah, Sylvia Utami Tunjung Pratiwi, Amran Nur, Titik Nuryastuti, Virgiawan Yoga Pratama, Ahmad Marzuki, Faisal, Ismail
Email(s):
hh241@umkt.ac.id
DOI:
10.52711/0974-360X.2024.00484
Address:
Hasyrul Hamzah1,5*, Sylvia Utami Tunjung Pratiwi2,5, Amran Nur3, Titik Nuryastuti4,5, Virgiawan Yoga Pratama1,5, Ahmad Marzuki6, Faisal7, Ismail8
1Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia.
2Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
3Department of Pharmacology, Biomedicine, Medical Faculty, Universitas Khairun, Ternate, North Maluku, Indonesia.
4Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
5Indonesia Biofilm Research Collaboration Center, Farmako Street, Sekip Utara, Yogyakarta 55281, Indonesia.
6Medical Laboratory Technology Faculty, Health Polytechnic Ministry of Health Maluku, Maluku 97233, Indonesia.
7Bachelor of Applied Environmental Sanitation Study Program, Poltekkes Kemenkes Gorontalo. Gorontalo 96135, Indonesia.
8Department of Pharmac
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
The World Health Organization has identified fungi as necessary in human health and released a list of urgent fungal pathogens, with Candida albicans among the most critical. Oral candidiasis is the most common infection caused by Candida albicans, and biofilm formation plays a crucial role in its persistence, recurrence, and antifungal resistance. Finding new drug candidates as therapy against Candida albicans biofilm is necessary, and the telang ternate plant is a potential candidate for antifungal and antibiofilm activity. The tests showed that the ethanol extract of telang flowers contains several beneficial compounds, including alkaloid, flavonoid, tannin, terpenoid, saponin, steroid, and anthocyanin. In antifungal testing, Telang ternate extract demonstrated inhibitory activity against C. albicans, with 85.10%±0.01 effectiveness, compared to the control activity of Fluconazole at 84.10%±0.01. The study found that the 1% w/v Telang Ternate plant extract provided the highest antibiofilm activity against C. albicans, with 80.81%±0.01 effectiveness in the middle phase. Telang Ternate extract effectively prevented biofilm formation during the 48-hour maturation phase, with the highest activity level at a concentration of 1% w/v, resulting in an inhibition of 78.44%±0.01. However, as the biofilm fully formed during the maturation phase, the extract's potency decreased, making it less effective against the stronger and more resistant biofilm. Telang ternate extract inhibited C. albicans biofilm by 72.00%±0.01, while Fluconazole reduced it by 75.30%±0.01 at the same concentration. SEM shows that Telang Ternate extract can cause damage in the extracellular polymeric matrix (EPS) of C. albicans biofilm. In conclusion, Telang Ternate extract acts as a potential antibiofilm activity against C. albicans (compared to fluconazole as a controlled drug) and develops a new antibiofilm agent.
Cite this article:
Hasyrul Hamzah, Sylvia Utami Tunjung Pratiwi, Amran Nur, Titik Nuryastuti, Virgiawan Yoga Pratama, Ahmad Marzuki, Faisal, Ismail. Antifungal and Antibiofilm activity of Telang Ternate (Clitoria ternatea) extract on Candida albicans fungi causing Oral Candidiasis. Research Journal of Pharmacy and Technology. 2024; 17(7):3089-7. doi: 10.52711/0974-360X.2024.00484
Cite(Electronic):
Hasyrul Hamzah, Sylvia Utami Tunjung Pratiwi, Amran Nur, Titik Nuryastuti, Virgiawan Yoga Pratama, Ahmad Marzuki, Faisal, Ismail. Antifungal and Antibiofilm activity of Telang Ternate (Clitoria ternatea) extract on Candida albicans fungi causing Oral Candidiasis. Research Journal of Pharmacy and Technology. 2024; 17(7):3089-7. doi: 10.52711/0974-360X.2024.00484 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-17
REFERENCES:
1. Fisher MC, Denning DW. The who fungal priority pathogens list as a game-changer. Nature Reviews Microbiology. 2023; 21(4): 211–2. doi:10.1038/s41579-023-00861-x
2. Bongomin F, Gago S, Oladele R, Denning D. Global and multi-national prevalence of fungal diseases—estimate precision. Journal of Fungi. 2017; 3(4): 57. doi:10.3390/jof3040057
3. Rodrigues ML, Nosanchuk JD. Recognition of fungal priority pathogens: What next? PLOS Neglected Tropical Diseases. 2023;17(3). doi:10.1371/journal.pntd.0011136
4. Obied Jasim N, Habeeb Alkhuzaie MM. Fungal infections (FI) associated with covid-19. Research Journal of Pharmacy and Technology. 2023; 698–702. doi:10.52711/0974-360x.2023.00119
5. Rabaan AA, Sulaiman T, Al-Ahmed SH, Buhaliqah ZA, Buhaliqah AA, AlYuosof B, et al. Potential strategies to control the risk of antifungal resistance in humans: A comprehensive review. Antibiotics. 2023; 12(3): 608. doi:10.3390/antibiotics12030608
6. Freese J, Beyhan S. Genetic diversity of human fungal pathogens. Current Clinical Microbiology Reports. 2023; 10(2): 17–28. doi:10.1007/s40588-023-00188-4
7. Parslow BY, Thornton CR. Continuing shifts in epidemiology and antifungal susceptibility highlight the need for improved disease management of invasive candidiasis. Microorganisms. 2022; 10(6): 1208. doi:10.3390/microorganisms10061208
8. S. Ibraheem R, A. Abbas B. Presence of virulence genes of candida albicans isolated from women with remarks to antifungal susceptibility. Research Journal of Pharmacy and Technology. 2022; 3751–4. doi:10.52711/0974-360x.2022.00629
9. A. Sayed M, A. Sayed G, Abdullah M. Ali E. Molecular identification, dimorphism and virulence of C. albicans. Research Journal of Pharmacy and Technology. 2023; 1007–11. doi:10.52711/0974-360x.2023.00168
10. Fisher MC, Alastruey-Izquierdo A, Berman J, Bicanic T, Bignell EM, Bowyer P, et al. Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology. 2022; 20(9): 557–71. doi:10.1038/s41579-022-00720-1
11. Rodrigues ML, Nosanchuk JD. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLOS Neglected Tropical Diseases. 2020; 14(2). doi:10.1371/journal.pntd.0007964
12. Varshan R, Gopinath P. Characterization and biofilm detection among clinically important candida species. Research Journal of Pharmacy and Technology. 2016; 9(9): 1375. doi:10.5958/0974-360x.2016.00263.8
13. Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral candidiasis: A disease of opportunity. Journal of Fungi. 2020; 6(1): 15. doi:10.3390/jof6010015
14. Ahmed LT. Genotyping and antifungal susceptibility of C. albicans isolated from infected women. Research Journal of Pharmacy and Technology. 2019; 12(11): 5171. doi:10.5958/0974-360x.2019.00895.3
15. Murtiastutik D, Listiawan MY, Bintanjoyo L, Hidayati AN, Widyantari S, Astindari A, et al. Ketoconazole: A re-emerging choice for oral candidiasis in patients with human immunodeficiency virus infection/acquired immunodeficiency syndrome. Research Journal of Pharmacy and Technology. 2022; 1071–6. doi:10.52711/0974-360x.2022.00179
16. Fathima T, Rajeshkumar S, Nagalingam M. Green synthesis of silver nanoparticles using symplocos racemosa and its antifungal activity against candida albicans. Research Journal Of Pharmacy And Technology. 2021; 14(2): 775–8. doi:10.5958/0974-360x.2021.00135.9
17. Gheorghe DC, Niculescu A-G, Bîrcă AC, Grumezescu AM. Biomaterials for the prevention of Oral Candidiasis Development. Pharmaceutics. 2021; 13(6): 803. doi:10.3390/pharmaceutics13060803
18. Cho E, Park Y, Kim K-Y, Han D, Kim HS, Kwon J-S, et al. Clinical characteristics and relevance of oral candida biofilm in tongue smears. Journal of Fungi. 2021; 7(2): 77. doi:10.3390/jof7020077
19. Meenambiga SS, Rajagopal K. Biofilm Inhibition Efficiency of Endophytic Fungi Isolated from Acacia nilotica against Oral Pathogens. Research Journal of Pharmacy and Technology. 2018; 11(5): 1855. doi:10.5958/0974-360x.2018.00345.1
20. Rezeki S, Gani BA, Abdat M, Andayani R, Batubara FY, Asmah N, et al. The Measurement of Candida albicans Tolerance under The Influence of Moringa oleifera. Research Journal of Pharmacy and Technology. 2023; 16(6). doi:10.52711/0974-360X.2023.00423
21. Hamzah H, Hertiani T, Pratiwi SU, Murti YB, Nuryastuti T. The Inhibition and Degradation Activity of Demethoxycurcumin as Antibiofilm on C. albicans ATCC 10231. Research Journal of Pharmacy and Technology. 2020; 13(1): 377. doi:10.5958/0974-360x.2020.00075.x
22. Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, et al. Mechanistic understanding of candida albicans biofilm formation and approaches for its inhibition. Frontiers in Microbiology. 2021; 12. doi:10.3389/fmicb.2021.638609
23. Guru EP, Gopinath P. Characterization and detection of biofilm among clinical isolates of Candida species by tube method. Research Journal of Pharmacy and Technology. 2016; 9(12): 2109. doi:10.5958/0974-360x.2016.00429.7
24. Deepigaa M. Antibacterial resistance of bacteria in biofilms. Research Journal of Pharmacy and Technology. 2017; 10(11): 4019. doi:10.5958/0974-360x.2017.00728.4
25. Meenambiga SS, Rajagopal K. Biofilm inhibition efficiency of endophytic fungi isolated from acacia nilotica against oral pathogens. Research Journal of Pharmacy and Technology. 2018; 11(5): 1855. doi:10.5958/0974-360x.2018.00345.1
26. Utami DT, Sylvia U, Pratiwi T, Haniastuti T, Hertiani T. Degradation of oral biofilms by zerumbone from zingiber zerumbet (L.). Research Journal of Pharmacy and Technology. 2020; 13(8): 3559. doi:10.5958/0974-360x.2020.00629.0
27. Hamzah H, Pratiwi SU, Jabbar A, Hafifah AS, Al-Fajri BA, Nurhalisah N. Bioactivity tracing of the ethanol extract of Bajakah Tampala (spatholobus Littoralis Hassk.) typical plant of Kalimantan Island as antibiofilm of staphylococcus aureus. Open Access Macedonian Journal of Medical Sciences. 2023; 11(A): 8–14. doi:10.3889/oamjms.2023.10676
28. Pratiwi SUT, Hamzah H. Inhibition and Degradation Activity of (Sapindus rarak seeds) ethanol extract against polymicrobial biofilm. Research Journal of Pharmacy and Technology. 2020; 13(11). doi:10.5958/0974-360X.2020.00947.6
29. Hariana A. 262 tumbuhan obat & khasiatnya. Jakarta, Indonesia: Penebar Swadaya; 2015.
30. Zahara M. Ulasan Singkat: Deskripsi Kembang telang (Clitoria Ternatea L.) Dan Manfaatnya. Jurnal Jeumpa. 2022; 9(2): 719–28. doi:10.33059/jj.v9i2.6509
31. Rizkawati M, Rizkita LD. Potensi Aktivitas antibakterial Ekstrak Bunga Telang (Clitoria Ternatea). Jurnal Sains dan Kesehatan. 2023; 5(1): 70–7. doi:10.25026/jsk.v5i1.1512
32. M.S. Putri D. Konservasi Tumbuhan obat di Kebun Raya Bali. Buletin Udayana Mengabdi. 2019; 18(3). doi:10.24843/bum.2019.v18.i03.p23
33. Febrianti F, Widyasanti A, Nurhasanah S. Aktivitas antibakteri Ekstrak Bunga Telang (Clitoria Ternatea L.) TERHADAP Bakteri Patogen. ALCHEMY Jurnal Penelitian Kimia. 2022; 18(2): 234. doi:10.20961/alchemy.18.2.52508.234-241
34. Cahyaningsih E, Yuda PE, Santoso P. Skrining FITOKIMIA Dan Uji Aktivitas antioksidan Ekstrak Etanol Bunga Telang (Clitoria Ternatea L.) Dengan Metode Spektrofotometri UV-vis. Jurnal Ilmiah Medicamento. 2019; 5(1). doi:10.36733/medicamento.v5i1.851
35. Pertiwi FD, Rezaldi F, Puspitasari R. Uji Aktivitas antibakteri Ekstrak Etanol Bunga Telang (Clitoria Ternatea L.) TERHADAP bakteri staphylococcus epidermidis. Biosaintropis (Bioscience-Tropic). 2022; 7(2): 57–68. doi:10.33474/e-jbst.v7i2.471
36. Purwaniati P, Arif AR, Yuliantini A. Analisis Kadar Antosianin Total Pada sediaan bunga telang (clitoria ternatea) Dengan metode Ph diferensial menggunakan spektrofotometri visible. Jurnal Farmagazine. 2020; 7(1): 18. doi:10.47653/farm.v7i1.157
37. Anggriani R, Ain N, Adnan S. Identification of phytochemical and characterization of anthocyanin green coconut fiber (Cocos nucifera L VAR varidis). Jurnal Teknologi Pertanian. 2017; 18(3). doi:10.21776/ub.jtp.2017.018.03.16
38. Chabib L, Hamzah H, Rahmah W, Sammulia SF, Setyowati E, Nurfitrian A. Tracking of the antibiofilm activities of Lakum leaf extract (Causonis trifolia Linn.) against Staphylococcus aureus. Pakistan Journal of Biological Sciences. 2023; 26(2): 91–100. doi:10.3923/pjbs.2023.91.100
39. Hamzah H, Pratiwi SUT, Jabbar A, Nandini E. Efficacy of Bajakah Tampala ethanol extract, a typical plant of Kalimantan Island (Borneo), against candida albicans biofilm. European Chemical Bulletin. 2022; 11(5). doi:10.31838/ecb/2022.11.05.009
40. Nuraini P, Moeharyono Puteri M, Pramesty E. Anti-biofilm activity of Epigallocatechin Gallate (EGCG) against streptococcus mutans bacteria. Research Journal of Pharmacy and Technology. 2021; 5019–23. doi:10.52711/0974-360x.2021.00875
41. Ratridewi I, Dzulkarnain SA, Wijaya AB, Huwae JT, Putra DS, Barlianto W, et al. Effects of piper betle leaf extract on biofilm and rhamnolipid formation of pseudomonas aeruginosa. Research Journal of Pharmacy and Technology. 2021; 5182–6. doi:10.52711/0974-360x.2021.00901
42. Hamzah H, Hertiani T, Pratiwi SUT, Nuryastuti T. Efficacy of Quercetin against Polymicrobial Biofilm on Catheters. Research Journal of Pharmacy and Technology. 2020; 13(11). doi:10.5958/0974-360X.2020.00923.3
43. Ismiyatin K, Mudjiono M, Kunarti S, Santoso ML, Hakiki D, Irsya W. Extracellular polymeric substance (EPS) degradation of enterococcus faecalis biofilm after irradiation with 405nm diode laser. Research Journal of Pharmacy and Technology. 2021; 3869–73. doi:10.52711/0974-360x.2021.00671
44. Muhammad MH, Idris AL, Fan X, Guo Y, Yu Y, Jin X, et al. Beyond risk: Bacterial biofilms and their regulating approaches. Frontiers in Microbiology. 2020; 11. doi:10.3389/fmicb.2020.00928
45. Singh S, Datta S, Narayanan KB, Rajnish KN. Bacterial Exo-polysaccharides in biofilms: Role in antimicrobial resistance and treatments. Journal of Genetic Engineering and Biotechnology. 2021; 19(1). doi:10.1186/s43141-021-00242-y
46. Mary RN, Banu N. Inhibition of biofilm formation in Serratia marcescens by Andrographolide from Andrographis paniculata. Research Journal of Pharmacy and Technology. 2017; 10(3): 789. doi:10.5958/0974-360x.2017.00148.2
47. Ali IA, Neelakantan P. Antibiofilm activity of phytochemicals against Enterococcus faecalis: A literature review. Phytotherapy Research. 2022; 36(7): 2824–38. doi:10.1002/ptr.7488
48. Bhavani G, P G. Detection of biofilm among clinical isolates of acinetobacter baumannii by tissue culture plate method (TCP). Research Journal of Pharmacy and Technology. 2016; 9(10): 1635. doi:10.5958/0974-360x.2016.00327.9
49. Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023; 11(6): 1614. doi:10.3390/microorganisms11061614
50. Mary RN, Banu N. Inhibition of antibiofilm mediated virulence factors in pseudomonas aeruginosa by andrographis paniculata. Research Journal of Pharmacy and Technology. 2017; 10(1): 141. doi:10.5958/0974-360x.2017.00031.2
51. El-Waseif AA, Abd El-Ghani GS, Abo El maaty SA, G. Hassan M. Cytotoxicity and promising anti-biofilm of Curcuma silver nanoparticles against candida albicans. Research Journal of Pharmacy and Technology. 2022; 3355–9. doi:10.52711/0974-360x.2022.00561
52. Soesilawati P, Imamatul Ummah N, Mega Rahma Syahnia SJ, Luthfiyya Arini N, Sjuhada Oki A. The role of Porphyromonas Gingivalis in oral biofilm: Pathophysiology in chronic periodontitis. Research Journal of Pharmacy and Technology. 2023; 1754–60. doi:10.52711/0974-360x.2023.00289
53. Abdulhameed Jassim S, Hamid Hassan M. Neem leaf extract as a potential antibiofilm and anti ESBLS agent for K. Pneumoniae. Research Journal of Pharmacy and Technology. 2023; 159–62. doi:10.52711/0974-360x.2023.00029
54. Thawabteh A, Juma S, Bader M, Karaman D, Scrano L, Bufo S, et al. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins. 2019; 11(11): 656. doi:10.3390/toxins11110656
55. Al Aboody MS, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics. 2020; 9(2): 45. doi:10.3390/antibiotics9020045
56. Chen Y, Gao Y, Yuan M, Zheng Z, Yin J. Anti-candida albicans effects and mechanisms of theasaponin E1 and Assamsaponin a. International Journal of Molecular Sciences. 2023; 24(11): 9350. doi:10.3390/ijms24119350
57. Martínez A, Rojas N, García L, González F, Domínguez M, Catalán A. In vitro activity of terpenes against candida albicans and ultrastructural alterations. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2014; 118(5): 553–9. doi:10.1016/j.oooo.2014.07.009
58. Riyadi FM, Prajitno A, Fadjar M, Syaifurrisal A, Fauziyyah AI. Potential of Moringa (moringa oleifera) leaf extract to inhibit the growth of pathogenic bacteria Edwardsiella Tarda. Journal of Aquaculture and Fish Health. 2021; 10(3): 321. doi:10.20473/jafh.v10i3.25057
59. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018; 9(1): 522–54. doi:10.1080/21505594.2017.1313372
60. Chaturvedi R, Chandra P, Mittal V. Biofilm Formation by Acinetobacter spp. in association with antibiotic resistance in clinical samples obtained from Tertiary Care Hospital. Research Journal of Pharmacy and Technology. 2019; 12(8): 3737. doi:10.5958/0974-360x.2019.00620.6
61. Jose J, Palanivelu A. Antimicrobial efficacy of a novel Root Canal Irrigant made from coconut and bromelain extract against biofilm forming pathogens–an in vitro evaluation. Research Journal of Pharmacy and Technology. 2021; 5222–6. doi:10.52711/0974-360x.2021.00909
62. Vaishali M, Geetha RV, Rathinavelu PK. Inhibitory effect of pomegranate oil on biofilm formation-an in vitro study. Research Journal of Pharmacy and Technology. 2018; 11(2): 521. doi:10.5958/0974-360x.2018.00096.3
63. Fan F, Liu Y, Liu Y, Lv R, Sun W, Ding W, et al. Candida albicans biofilms: Antifungal resistance, immune evasion, and emerging therapeutic strategies. International Journal of Antimicrobial Agents. 2022; 60(5–6): 106673. doi:10.1016/j.ijantimicag.2022.106673
64. Hamzah H, Siregar KAAK, Suffiana Y, Yudhawan I, Nurwijayanto A. Antibacterial and antibiofilm activity of Begonia Multangula blume. leaf extractagainst candida albicans. Food Research. 2022; 6(1): 260–8. doi:10.26656/fr.2017.6(1).560
65. Arulmathi R, Sudarmani DNP, Rajagopal K, Nagarajan T. Screening and Evaluation of Invasive Weeds against Pseudomonas aeruginosa (Mtcc 3541) for Quorum Sensing Interference and its Free Radical Scavenging. Research Journal of Pharmacy and Technology. 2017; 10(2): 525. doi:10.5958/0974-360x.2017.00104.4
66. Aguiar FL, Santos NC, de Paula Cavalcante CS, Andreu D, Baptista GR, Gonçalves S. Antibiofilm activity on candida albicans and mechanism of action on biomembrane models of the antimicrobial peptide CTN[15–34]. International Journal of Molecular Sciences. 2020; 21(21): 8339. doi:10.3390/ijms21218339