Author(s):
Armaini Armaini, Imelda Imelda, Eti Yerizel, Netti Suharti, Arif Juliari Kusnanda, Eva Musifa
Email(s):
armaini@sci.unand.ac.id , armaini59@gmail.com
DOI:
10.52711/0974-360X.2024.00488
Address:
Armaini Armaini1*, Imelda Imelda1, Eti Yerizel2, Netti Suharti3, Arif Juliari Kusnanda1,4, Eva Musifa1
1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Kampus Limau Manis, Padang, West Sumatera, 25163, Indonesia.
2Department of Biochemistry, Faculty of Medicine, Andalas University, Padang, 25163, Indonesia.
3Faculty of Pharmacy, Andalas University, Padang 25163, Indonesia.
4Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang 25173, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
Phycocyanin is a protein pigment from the cyanobacteria Spirulina platensis (S. platensis) which is the main pigment containing bioactive compounds that can act as nutraceuticals and supplements. The focus of this research is to characterize and biological activities Phycocyanin from S. platensis was isolated from Maninjau Lake, West Sumatra, Indonesia. Phycocyanin production from S. platensis is enhanced by the induction of sodium glutamate as metabolic stress. Characterization of Phycocyanin extracted from S. platensis was carried out by UV-Vis and FTIR. Biological activities assay as an antioxidant was determined by the ABTS method with the Trolox standard and the inflammation test was determined based on inhibition of BSA protein denaturation and inhibition of lipoxygenase enzymes. Phycocyanin production was increased by giving MSG (7.5mM) as metabolic stress in the growth medium, the concentration of Phycocyanin (48.7±0.443mg/L) compared to no MSG (29.68±0.364mg/L). Characterization with UV-Vis showed that the absorption at a wavelength of 620nm was Phycocyanin, based on the FTIR results on the spectrum, peaks appeared indicating the carbonyl, hydroxyl, carboxyl groups, primary and secondary anima bonds, pyrrole rings. Antioxidant activity of Phycocyanin obtained IC50 is 46.32ppm, using standard Trolox where IC50 of 18.773ppm. The activity of Phycocyanin as anti-inflammatory with the BSA protein denaturation inhibition method obtained an IC50 of 62.3ppm compared to the standard Aspirin IC50 of 42.17ppm. Inhibition of lipoxygenase enzyme to determine the anti-inflammatory activity of Phycocyanin obtained IC50 of 48.73 ppm. The Phycocyanin extracted from S. platensis has benefits as an antioxidant and anti-inflammatory.
Cite this article:
Armaini Armaini, Imelda Imelda, Eti Yerizel, Netti Suharti, Arif Juliari Kusnanda, Eva Musifa. Characterization and Biological activities of Phycocyanin extracted from Spirulina platensis local isolate of Maninjau Lake, West Sumatra, Indonesia. Research Journal of Pharmacy and Technology. 2024; 17(7):3119-6. doi: 10.52711/0974-360X.2024.00488
Cite(Electronic):
Armaini Armaini, Imelda Imelda, Eti Yerizel, Netti Suharti, Arif Juliari Kusnanda, Eva Musifa. Characterization and Biological activities of Phycocyanin extracted from Spirulina platensis local isolate of Maninjau Lake, West Sumatra, Indonesia. Research Journal of Pharmacy and Technology. 2024; 17(7):3119-6. doi: 10.52711/0974-360X.2024.00488 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-21
REFERENCES:
1. Armaini, Salim M, Pribadi P. Induction effect of microalgae Scenedesmus dimorphus against hematology on mice (Mus musculus) suffering anemia diseases. Asian J. Pharm. Clin. Res. 2018; 11(7): 348-352. doi:10.22159/ajpcr.2018.v11i7.24825
2. Kusnanda AJ, Dharma A, Armaini, Syafrizayanti, Chaidir Z, Pardi H. Antioxidant and α-glucosidase inhibitor activity characterization of bioactive components from Parachlorella kessleri AUP5. AACL Bioflux. 2023; 16(4): 2252-2263.
3. Rinaldi R, Armaini, Salim M. A Selection of Nitroen Source for Biomass and Lipid Production of Snecedesmus dimorphus Microalgae. Researcj J. Pharm Biol Sci. 2(3): 847-855.
4. Koru E. 7. Earth Food Spirulina (Arthrospira).pdf.
5. Wu HL, Wang GH, Xiang WZ, Li T, He H. Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina platensis. Int J Food Prop. 2016; 19(10): 2349-2362. doi:10.1080/10942912.2015.1038564
6. Munier M, Morançais M, Dumay J, Jaouen P, Fleurence J. One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu. J Chromatogr B Anal Technol Biomed Life Sci. 2015; 992: 23-29. doi:10.1016/j.jchromb.2015.04.012
7. Li Y, Zhang Z, Paciulli M, Abbaspourrad A. Extraction of phycocyanin—A natural blue colorant from dried spirulina biomass: Influence of processing parameters and extraction techniques. J Food Sci. 2020; 85(3): 727-735. doi:10.1111/1750-3841.14842
8. Chew KW, Chia SR, Krishnamoorthy R, Tao Y, Chu DT, Show PL. Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresour Technol. 2019; 288(May). doi:10.1016/j.biortech.2019.121519
9. Jangdey MS, Gupta A, Sah AK, Daharwal SJ. Role of antioxidants in developing novel delivery systems as longevity therapy. 2014; 6(3): 119-127.
10. Madhikarmi NL, Siddalinga KR. Study of oxidative stress and antioxidants status in iron deficient anemic patients. 2012; 4(4): 162-167.
11. Gunalan G, Suresh Kumar M, Sangeetha N. Preliminary phytochemical analysis and in vitro oxidant scavenging activity of Rosemary officinalis. Res. J. Pharm. Technol. 2011; 4(10): 1588-1590.
12. Grover P, Bhatnagar A, Kumari N, Narayan Bhatt A, Kumar Nishad D, Purkayastha J. C-Phycocyanin-a novel protein from Spirulina platensis- In vivo toxicity, antioxidant and immunomodulatory studies. Saudi J Biol Sci. 2021; 28(3): 1853-1859. doi:10.1016/j.sjbs.2020.12.037
13. Kuddus M, Singh P, Thomas G, Al-hazimi A. Recent Developments in Production and Biotechnological Applications of C-Phycocyanin. 2013; 2013.
14. Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr Protein Pept Sci. 2005; 4(3): 207-216. doi:10.2174/1389203033487216
15. Landskron G, De La Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol Res. 2014; 2014. doi:10.1155/2014/149185
16. Franceschi C. Inflammaging as a Major Characteristic of Old People: Can It Be Prevented or Cured? Nutr Rev. 2007;65(SUPPL.3):12-15. doi:10.1111/j.1753-4887.2007.tb00358.x
17. Balkwill FR, Mantovani A. Cancer-related inflammation: Common themes and therapeutic opportunities. Semin Cancer Biol. 2012; 22(1): 33-40. doi:10.1016/j.semcancer.2011.12.005
18. Kusnanda AJ, Dharma A, Chaidir Z. Carotenoid Profile of Freshwater Microalgae Mychonastes racemosus AUP1 and its Antioxidant properties. 2023; 16(January):1-7.
19. Musifa E, Kusnanda AJ, Dharma A, Sciences N, Andalas U, Limau K. Monosodium Glutamate (MSG) as Metabolic Stressors Stimulate the Production of Valuable Compounds in Spirulina platensis. 2023; 27(2): 731-743.
20. Singh NK, Dhar DW. Phylogenetic relatedness among Spirulina and related cyanobacterial genera. World J Microbiol Biotechnol. 2011; 27(4): 941-951. doi:10.1007/s11274-010-0537-x
21. Gopinatha S, Nagarajanb N. Journal of Applied Research and Technology. J Appl Res Technol. 2015; 13: 374-381.
22. Batcioʇlu M, Zimmermann B, Kohler A. A multiscale vibrational spectroscopic approach for identification and biochemical characterization of pollen. PLoS One. 2015; 10(9). doi:10.1371/journal.pone.0137899
23. Manjunatha SS, Girisha ST. Characterization of microalgal biomass through fourier transforms infrared (FT-IR) spectroscopy. Int J Bot Stud. 2021; 6(1): 57-60. https://www.researchgate.net/publication/348900141_Characterization_of_microalgal_biomass_through_fourier_transforms_infrared_FT-IR_spectroscopy
24. Assunção MFG, Amaral R, Martins CB, et al. Screening microalgae as potential sources of antioxidants. J. Appl Phycol. 2017; 29(2): 865-877. doi:10.1007/s10811-016-0980-7
25. Wang L, Wang L, Manzi HP, et al. Isolation and screening of Tetradesmus dimorphus and Desmodesmus asymmetricus from natural habitats in Northwestern China for clean fuel production and N, P removal. Biomass Convers Biorefinery. Published online 2020. doi:10.1007/s13399-020-01034-z
26. Safari R, Amiri RZ, Esmaeilzadeh Kenari R. Antioxidant and antibacterial activities of C-phycocyanin from common name Spirulina platensis. Iran J Fish Sci. 2020; 19(4): 1911-1927. doi:10.22092/ijfs.2019.118129
27. Qiao BW, Liu XT, Wang CX, Song S, Ai CQ, Fu YH. Preparation, Characterization, and Antioxidant Properties of Phycocyanin Complexes Based on Sodium Alginate and Lysozyme. Front Nutr. 2022; 9(May): 1-11. doi:10.3389/fnut.2022.890942
28. Jenifer P, Balakrishnan CP, Pillai SC. In-vitro Antioxidant activity of Marine Red Algae Gracilaria foliifera . Asian J. Pharm. Technol. 2017; 7(2): 105. doi:10.5958/2231-5713.2017.00018.6
29. Pal R, Girhepunje K, Shrivastava N, Hussain MM, Thirumoorthy N. Antioxidant and free radical scavenging activity of ethanolic extract of Morinda citrifolia. Res. J. Pharm. Technol. 2011; 4(8): 1224-1226.
30. Yadav AR, Mohite SK. Antioxidant activity of Malvastrum coromandelianum leaf extracts. Res J Top Cosmet Sci. 2020; 11(2): 59-61. doi:10.5958/2321-5844.2020.00010.2
31. Renugadevi K, Valli Nachiyar C, Sowmiya P, Sunkar S. Antioxidant activity of phycocyanin pigment extracted from marine filamentous cyanobacteria Geitlerinema sp TRV57. Biocatal Agric Biotechnol. 2018; 16(March): 237-242. doi:10.1016/j.bcab.2018.08.009
32. Chew KW, Yap JY, Show PL, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. Published online 2017. doi:10.1016/j.biortech.2017.01.006
33. Ray S. Exploring the protective role of water extract of Spirulina platensis on flutamide-induced lipid peroxidation using 4-hydroxy nonenal and nitric oxide as model markers. Res. J. Pharm. Technol. 2011; 4(12): 1857-1860.
34. Liu R, Qin S, Li W. Phycocyanin: Anti-inflammatory effect and mechanism. Biomed Pharmacother. 2022; 153(July): 113362. doi:10.1016/j.biopha.2022.113362
35. S.K.Dubey, Batra A. Study of anti oxidant and anti-inflammatory activity from ethanol fraction of Thuja occidentalis Linn. Res. J. Sci. Technol. 2009; 1(1): 39-42.
36. Prasanth S, Kumar Arun G, Haridas M, Sabu A. Phycocyanin of marine Oscillatoria sp. inhibits lipoxygenase by protein-protein interaction-induced change of active site entry apace: A model for non-specific biofunctions of phycocyanins. Int. J. Biol Macromol. 2020; 165: 1111-1118. doi:10.1016/j.ijbiomac.2020.09.238
37. Jensen GS, Attridge VL, Beaman JL, Guthrie J, Ehmann A, Benson KF. Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from arthrospira platensis: Contribution to bioactivities by the non-phycocyanin aqueous fraction. J. Med. Food. 2015; 18(5): 535-541. doi:10.1089/jmf.2014.0083
38. Elya B, Puspitasari N, Sudarmin AC. Antioxidant activity and inhibition of lipoxygenase activity ethanol extract of endosperm Arenga pinnata (Wurmb) merr. Asian J Pharm Clin Res. 2017; 10(Special Issue October): 76-80. doi:10.22159/ajpcr.2017.v10s5.23102
39. Ravi M, Tentu S, Baskar G, et al. Molecular mechanism of anti-cancer activity of phycocyanin in triple-negative breast cancer cells. BMC Cancer. 2015; 15(1): 1-13. doi:10.1186/s12885-015-1784-x
40. Jiang L, Wang Y, Yin Q, et al. Phycocyanin: A potential drug for cancer treatment. J. Cancer. 2017; 8(17): 3416-3429. doi:10.7150/jca.21058
41. Chakraborty P, Kumar S, Dutta D, Gupta V. Role of Antioxidants in Common Health Diseases. Res. J. Pharm. Tech. 2009; 2(2): 238-244.
42. Menon R. Antioxidants and their therapeutic potential- A review. Res. J. Pharm. Technol. 2013; 6(12): 1426-1429.
43. Ashfaq MH, Siddique A, Shahid S. Antioxidant Activity of Cinnamon zeylanicum: (A Review). Asian J. Pharm. Res. 2021; 11(2): 106-116. doi:10.52711/2231-5691.2021.00021