Author(s): Harry Santosa, I G.A. Sumartha, Dini Kesuma, Tegar A. Yuniarta

Email(s): tegar.achsendo@staff.ubaya.ac.id

DOI: 10.52711/0974-360X.2024.00508   

Address: Harry Santosa, I G.A. Sumartha, Dini Kesuma, Tegar A. Yuniarta*
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Jawa Timur, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 7,     Year - 2024


ABSTRACT:
Bis(arylidene) cyclohexanone-based compound has been known for possessing various biological activity, especially as potential anticancer agent. The scaffold mimicking the structure of curcumin without the diketo group, thus eliminating the tautomeric group which could affect its potency. This study aimed to synthesize one of its derivate, 2,6-bis-(4-nitrobenzylidene) cyclohexanone and determine its anticancer activity against A549 pulmonary cancer cell line as well as its cytotoxicity against normal Vero cell. In addition, molecular docking study was performed to predict its binding mechanism in EGFR receptor. Synthesis was performed using aldol condensation with cyclohexanone and 4-nitrobenzaldehyde as starting material. This reaction was carried out in basic condition under microwave irradiation. Afterwards, the compound was tested its cytotoxic activity using MTT assay against A549 and Vero cell line. Ultimately, molecular docking was done using Vina 1.2.3. against EGFR receptor (PDB ID: 1M17). The results showed that 2,6-bis-(4-nitrobenzylidene) cyclohexanone has been successfully synthesized using this approach with acceptable yield. The compound also possesses anticancer activity against pulmonary cancer cell IC50 = 0.48±0.05mM) with negligible cytotoxicity against normal cell. Molecular docking result suggested that this compound targets EGFR receptor as it yielded low binding energy better than erlotinib, the natural ligand of EGFR. Further developments are needed to optimize its potency.


Cite this article:
Harry Santosa, I G.A. Sumartha, Dini Kesuma, Tegar A. Yuniarta. Synthesis, Anticancer activity and molecular modelling of 2,6-bis-(4-nitrobenzylidene) cyclohexanone. Research Journal of Pharmacy and Technology. 2024; 17(7):3246-0. doi: 10.52711/0974-360X.2024.00508

Cite(Electronic):
Harry Santosa, I G.A. Sumartha, Dini Kesuma, Tegar A. Yuniarta. Synthesis, Anticancer activity and molecular modelling of 2,6-bis-(4-nitrobenzylidene) cyclohexanone. Research Journal of Pharmacy and Technology. 2024; 17(7):3246-0. doi: 10.52711/0974-360X.2024.00508   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-41


REFERENCES:
1.    Sung H. Ferlay J. Siegel RL. Laversanne M. Soerjomataram I. Jemal A. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49, https://doi.org/https://doi.org/10.3322/caac.21660.
2.    Molina JR. Yang P. Cassivi SD. Schild SE. Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and  survivorship. Mayo Clin Proc. 2008; 83(5): 584–94, https://doi.org/10.4065/83.5.584.
3.    Hogea P. Tudorache E. Fira-Mladinescu O. Pescaru C. Manolescu D. Bratosin F. et al. Bronchial Microbiota and the Stress Associated with Invasive Diagnostic Tests in Lung Cancer vs. Benign Pulmonary Diseases: A Cross-Sectional Study. Diagnostics. 2023. https://doi.org/10.3390/diagnostics13142419.
4.    Homocianu M. Serbezeanu D. Macsim AM. Vlad-Bubulac T. From cyclohexanone to photosensitive polyesters: Synthetic pathway, basic characterization, and photo-/halochromic properties. J Mol Liq. 2020; 316: 113888, https://doi.org/https://doi.org/10.1016/j.molliq.2020.113888.
5.    Nakhaei A. Morsali A. Davoodnia A. An efficient green approach to aldol and cross-aldol condensations of ketones with aromatic aldehydes catalyzed by nanometasilica disulfuric acid in water. Russ J Gen Chem. 2017; 87(5): 1073–8, https://doi.org/10.1134/S1070363217050292.
6.    Cui J. Crich D. Wink D. Lam M. Rheingold AL. Case DA. et al. Design and synthesis of highly constrained factor Xa inhibitors:  amidine-substituted bis(benzoyl)--diazepan-2-ones and bis(benzylidene)-bis(gem-dimethyl)cycloketones. Bioorg Med Chem. 2003; 11(16): 3379–92, https://doi.org/10.1016/s0968-0896(03)00332-8.
7.    Lam KW. Tham CL. Liew CY. Syahida A. Abdul Rahman MB. Israf DA. et al. Synthesis and evaluation of DPPH and anti-inflammatory activities of 2,6-bisbenzylidenecyclohexanone and pyrazoline derivatives. Med Chem Res. 2012; 21(3): 333–44, https://doi.org/10.1007/s00044-010-9521-0.
8.    Sun W. Wang S. Zhao W. Wu C. Guo S. Gao H. et al. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr. 2017; 57(7): 1451–523, https://doi.org/10.1080/10408398.2016.1176554.
9.    Nakhjiri M. Safavi M. Alipour E. Emami S. Atash AF. Jafari-Zavareh M. et al. Asymmetrical 2,6-bis(benzylidene)cyclohexanones: Synthesis, cytotoxic activity  and QSAR study. Eur J Med Chem. 2012; 50: 113–23, https://doi.org/10.1016/j.ejmech.2012.01.045.
10.    Alibeiki F. Jafari N. Karimi M. Peeri Dogaheh H. Potent anti-cancer effects of less polar Curcumin analogues on gastric  adenocarcinoma and esophageal squamous cell carcinoma cells. Sci Rep. 2017; 7(1): 2559, https://doi.org/10.1038/s41598-017-02666-4.
11.    Mapoung S. Suzuki S. Fuji S. Naiki-Ito A. Kato H. Yodkeeree S. et al. Cyclohexanone curcumin analogs inhibit the progression of castration-resistant  prostate cancer in vitro and in vivo. Cancer Sci. 2019; 110(2): 596–607. https://doi.org/10.1111/cas.13897.
12.    Rahim NFC. Hussin Y. Aziz MNM. Mohamad NE. Yeap SK. Masarudin MJ. et al. Cytotoxicity and Apoptosis Effects of Curcumin Analogue  (2E,6E)-2,6-Bis(2,3-Dimethoxybenzylidine) Cyclohexanone (DMCH) on Human Colon Cancer Cells HT29 and SW620 In Vitro. Molecules. 2021; 26(5). https://doi.org/10.3390/molecules26051261.
13.    Priyadarsini KI. Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des. 2013; 19(11): 2093–100. https://doi.org/10.2174/138161213805289228.
14.    Shen L. Ji H-F. The pharmacology of curcumin: is it the degradation products? Trends Mol Med. 2012; 18(3): 138–44, https://doi.org/10.1016/j.molmed.2012.01.004.
15.    Handayani S. Budimarwanti C. Haryadi W. Microwave-assisted organic reactions: Eco-friendly synthesis of dibenzylidenecyclohexanone derivatives via crossed aldol condensation. Indones J Chem. 2017; 17(2): 336–41. https://doi.org/10.22146/ijc.25460.
16.    Gall E Le. Texier-Boullet F. Hamelin J. Simple Access to α, β Unsaturated Ketones by Acid-Catalyzed Solvent-Free Reactions. Synth Commun. 1999; 29(20): 3651–7. https://doi.org/10.1080/00397919908086000.
17.    Rostami A. Ahmad-Jangi F. Sulfamic acid: An efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free. Chinese Chem Lett. 2011; 22(9): 1029–32. https://doi.org/https://doi.org/10.1016/j.cclet.2011.03.015.
18.    Salehi P. Ali Zolfigol M. Shirini F. Baghbanzadeh M. Silica Sulfuric Acid and Silica Chloride as Efficient Reagents for Organic Reactions. Curr Org Chem. 2006: 2171–89. https://doi.org/http://dx.doi.org/10.2174/138527206778742650.
19.    Narender T. Papi Reddy K. A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett. 2007; 48(18): 3177–80. https://doi.org/https://doi.org/10.1016/j.tetlet.2007.03.054.
20.    Wan Y. Chen X-M. Pang L-L. Ma R. Yue C-H. Yuan R. et al. Synthesis and Fluorescence Properties of α,α′-Bis(substituted-benzylidene)cycloalkanones Catalyzed by 1-Methyl-3(2-(sulfooxy)ethyl)-1H-imidazol-3-ium Chloride. Synth Commun. 2010; 40(15): 2320–8. https://doi.org/10.1080/00397910903243781.
21.    Santosa H. Yuniarta TA. Kesuma D. Putra GS. 2-Hydroxy-N′-(4-fluorobenzoyl)benzohydrazide. Molbank. 2020; 2020(1). https://doi.org/10.3390/M1103.
22.    Xu Y-Y. Cao Y. Ma H. Li H-Q. Ao G-Z. Design, synthesis and molecular docking of α,β-unsaturated cyclohexanone  analogous of curcumin as potent EGFR inhibitors with antiproliferative activity. Bioorg Med Chem. 2013; 21(2): 388–94. https://doi.org/10.1016/j.bmc.2012.11.031.
23.    Eberhardt J. Santos-Martins D. Tillack AF. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021; 61(8): 3891–8. https://doi.org/10.1021/acs.jcim.1c00203.
24.    Kesuma D. Medika A. Yuniarta TA. Synthesis and cytotoxic activity of N-(2,4-dichloro)benzoyl-N’-phenylthiourea against human breast cancer cell line. Thai J Pharm Sci. 2022; 46(2): 173–6.
25.    Stamos J. Sliwkowski MX. Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in  complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002; 277(48): 46265–72. https://doi.org/10.1074/jbc.M207135200.
26.    Sari S. Andayani TM. Endarti D. Widayati K. Health-related quality of life in non-small cell lung cancer (Nsclc) patients with mutation of epidermal growth factor receptor (egfr) in indonesia. Res. J. Pharm. Technol. 2020; 13(1): 443–7. https://doi.org/10.5958/0974-360X.2020.00086.4.
27.    Insuasty B. Becerra D. Quiroga J. Abonia R. Nogueras M. Cobo J. Synthesis of Novel Pyrimido[4,5-b]quinolin-4-ones with Potential Antitumor Activity. J Heterocycl Chem. 2013; 50(3): 506–12. https://doi.org/https://doi.org/10.1002/jhet.1510.
28.    Dowell J. Minna JD. Kirkpatrick P. Erlotinib hydrochloride. Nat Rev Drug Discov. 2005; 4(1): 13–4. https://doi.org/10.1038/nrd1612.
29.    Greve G. Schiffmann I. Pfeifer D. Pantic M. Schüler J. Lübbert M. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer. 2015; 15(1): 947. https://doi.org/10.1186/s12885-015-1967-5.
30.    Wang Z. Sun H. Yao X. Li D. Xu L. Li Y. et al. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys. 2016; 18(18): 12964–75. https://doi.org/10.1039/C6CP01555G.
31.    Ramírez D. Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best  Solution without Considering Available Structural Data? Molecules. 2018; 23(5). https://doi.org/10.3390/molecules23051038.



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available