Author(s): Hajar Benmhammed, Mouloud Lamtai, Samir Bikri, Abdelhalem Mesfioui, Abdeljabbar Nassiri, Samira Mouden, Aboubaker El Hassni

Email(s): samir.bikri@uit.ac.ma

DOI: 10.52711/0974-360X.2024.00519   

Address: Hajar Benmhammed1, Mouloud Lamtai2, Samir Bikri2, Abdelhalem Mesfioui2, Abdeljabbar Nassiri2, Samira Mouden2, Aboubaker El Hassni2
1Medicine, Boston University, Boston.
2Laboratory of Biology and Health, Biology Department, Ibn Tofail University, Faculty of Sciences, Kenitra, Morocco.
*Corresponding Author

Published In:   Volume - 17,      Issue - 7,     Year - 2024


ABSTRACT:
During the postnatal period, the organism is highly dependent on the primary caregiver for nursing and protection. The disruption of the maternal-offspring relationship has been widely assessed in animal models. A less investigated paradigm is the separation of the offspring from both their mothers and other littermates, commonly referred to as maternal deprivation (MD). In our study, we chose to investigate the effects of this deprivation on behavioural and biochemical outcomes in adult male and female Wistar rats. Rats were divided into five groups. A control group was left undisturbed, while the experimental design included four groups. Three of these groups underwent continuous 24hour maternal deprivation (MD) at varying postnatal stages (day 3, 5, or 9), and one group experienced episodic MD for 8hours daily from day 3 to day 5. Each group comprised 16 rats with an equal distribution of genders. Upon reaching 90 days of age, the rats underwent behavioral assessments alongside biochemical analyses focusing on oxidative and inflammatory markers. Generally, exposure to MD during different postnatal periods, whether continuous or episodic, resulted in reduced locomotor activity, consistent anxiogenic behaviors, a depressive response, and elevated levels of oxidative stress and inflammation. Female rats subjected to maternal deprivation exhibited greater stress sensitivity and higher inflammatory and oxidative responses compared to males. It appears that the response to MD is influenced by factors such as duration, frequency, and timing of deprivation, suggesting a complex modulation of these effects.


Cite this article:
Hajar Benmhammed, Mouloud Lamtai, Samir Bikri, Abdelhalem Mesfioui, Abdeljabbar Nassiri, Samira Mouden, Aboubaker El Hassni. Postnatal Maternal Deprivation Induces Anxious Behaviors, Depressive Behaviors, and Increased Central Inflammation and Oxidative Stress in Adult Rats. Research Journal of Pharmacy and Technology. 2024; 17(7):3320-8. doi: 10.52711/0974-360X.2024.00519

Cite(Electronic):
Hajar Benmhammed, Mouloud Lamtai, Samir Bikri, Abdelhalem Mesfioui, Abdeljabbar Nassiri, Samira Mouden, Aboubaker El Hassni. Postnatal Maternal Deprivation Induces Anxious Behaviors, Depressive Behaviors, and Increased Central Inflammation and Oxidative Stress in Adult Rats. Research Journal of Pharmacy and Technology. 2024; 17(7):3320-8. doi: 10.52711/0974-360X.2024.00519   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-52


REFERENCES:
1.    Lucion AB, Bortolini MC. Mother-pup interactions: rodents and humans. Front Endocrinol. 2014; 5: 17. doi:10.3389/fendo.2014.00017
2.    Subbalakshmi N, Sunandha S. Influence of Perceived Stress on Hemoglobin Concentration. Res J Pharm Technol. 2017; 10(1): 61. doi:10.5958/0974-360X.2017.00015.4
3.    Zhang X, Wang B, Jin J, et al. Early deprivation reduced anxiety and enhanced memory in adult male rats. Brain Res Bull. 2014; 108: 44-50. doi:10.1016/j.brainresbull.2014.08.005
4.    De la Fuente M, Llorente R, Baeza I, et al. Early maternal deprivation in rats: a proposed animal model for the study of developmental neuroimmunoendocrine interactions. Ann N Y Acad Sci. 2009; 1153: 176-183. doi:10.1111/j.1749-6632.2008.03979.x
5.    Spratt EG, Friedenberg SL, Swenson CC, et al. The Effects of Early Neglect on Cognitive, Language, and Behavioral Functioning in Childhood. Psychol Irvine Calif. 2012; 3(2): 175-182. doi:10.4236/psych.2012.32026
6.    Koizumi M, Takagishi H. The relationship between child maltreatment and emotion recognition. PloS One. 2014; 9(1): e86093. doi:10.1371/journal.pone.0086093
7.    Meskini N, Lamtai M, Sfendla A, El Madhi Y, Ahami AhmedOT, Ouahidi ML. Prevalence of stress, anxiety and depression in the context of climate change among newly recruited contract teachers in Morocco. Bourekkadi S, Kerkeb ML, El Imrani O, et al., eds. E3S Web Conf. 2023; 412: 01073. doi:10.1051/e3sconf/202341201073
8.    Nylander I, Roman E. Is the rodent maternal separation model a valid and effective model for studies on the early-life impact on ethanol consumption? Psychopharmacology (Berl). 2013; 229(4): 555-569. doi:10.1007/s00213-013-3217-3
9.    Macrì S, Würbel H. Developmental plasticity of HPA and fear responses in rats: a critical review of the maternal mediation hypothesis. Horm Behav. 2006; 50(5): 667-680. doi:10.1016/j.yhbeh.2006.06.015
10.    Réus GZ, Nacif MP, Abelaira HM, et al. Ketamine ameliorates depressive-like behaviors and immune alterations in adult rats following maternal deprivation. Neurosci Lett. 2015; 584: 83-87. doi:10.1016/j.neulet.2014.10.022
11.    Baudin A, Blot K, Verney C, et al. Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiol Learn Mem. 2012; 98(3): 207-214. doi:10.1016/j.nlm.2012.08.004
12.    Chocyk A, Bobula B, Dudys D, et al. Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur J Neurosci. 2013; 38(1): 2089-2107. doi:10.1111/ejn.12208
13.    Li M, Xue X, Shao S, Shao F, Wang W. Cognitive, emotional and neurochemical effects of repeated maternal separation in adolescent rats. Brain Res. 2013; 1518: 82-90. doi:10.1016/j.brainres.2013.04.026
14.    Wang Q, Li M, Du W, Shao F, Wang W. The different effects of maternal separation on spatial learning and reversal learning in rats. Behav Brain Res. 2015; 280: 16-23. doi:10.1016/j.bbr.2014.11.040
15.    Schmauss C, Lee-McDermott Z, Medina LR. Trans-generational effects of early life stress: the role of maternal behavior. Sci Rep. 2014; 4: 4873. doi:10.1038/srep04873
16.    Xiong GJ, Yang Y, Wang LP, Xu L, Mao RR. Maternal separation exaggerates spontaneous recovery of extinguished contextual fear in adult female rats. Behav Brain Res. 2014; 269: 75-80. doi:10.1016/j.bbr.2014.04.015
17.    Pinheiro RMC, de Lima MNM, Portal BCD, et al. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm Vienna Austria 1996. 2015; 122(5): 709-719. doi:10.1007/s00702-014-1303-2
18.    Spivey JM, Padilla E, Shumake JD, Gonzalez-Lima F. Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain. Brain Res. 2011;1367:198-206. doi:10.1016/j.brainres.2010.10.038
19.    Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, Marcos J, Nadal R, Valverde O. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2016; 65: 104-117. doi:10.1016/j.pnpbp.2015.09.003
20.    Nassiri A, Lamtai M, Berkiks I, et al. Age and Sex-Specific Effects of Maternal Deprivation on Memory and Oxidative Stress in the Hippocampus of Rats. Published online 2023.
21.    Marais L, van Rensburg SJ, van Zyl JM, Stein DJ, Daniels WMU. Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci Res. 2008; 61(1): 106-112. doi:10.1016/j.neures.2008.01.011
22.    Couto FS do, Batalha VL, Valadas JS, Data-Franca J, Ribeiro JA, Lopes LV. Escitalopram improves memory deficits induced by maternal separation in the rat. Eur J Pharmacol. 2012; 695(1-3): 71-75. doi:10.1016/j.ejphar.2012.08.020
23.    Fenoglio KA, Brunson KL, Baram TZ. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol. 2006; 27(2): 180-192. doi:10.1016/j.yfrne.2006.02.001
24.    Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009; 10(6): 434-445. doi:10.1038/nrn2639
25.    Xu H, Hu W, Zhang X, et al. The effect of different maternal deprivation paradigms on the expression of hippocampal glucocorticoid receptors, calretinin and calbindin-D28k in male and female adolescent rats. Neurochem Int. 2011; 59(6): 847-852. doi:10.1016/j.neuint.2011.07.010
26.    Sokoloff G, Blumberg MS. Competition and cooperation among huddling infant rats. Dev Psychobiol. 2001; 39(2): 65-75. doi:10.1002/dev.1030
27.    Schank JC, Alberts JR. The developmental emergence of coupled activity as cooperative aggregation in rat pups. Proc Biol Sci. 2000; 267(1459): 2307-2315. doi:10.1098/rspb.2000.1284
28.    Bikri, S., Talhaoui, A., Fath, N., Hsaini, A., Benmhammed, H., Ahami, AOT., Aboussaleh, Y (2022a). Insulin supplemented with phenolic fraction concentrates displays anxiolytic and antidepressant-like properties with reductions of oxidative brain damage in chronically stressed diabetic rats. Journal of Herbmed Pharmacol, 11(4): 562-574. doi: 10.34172/jhp.2022.65.
29.    El Aboubi M, Bikri S, Nabil B, El Mahjoub A. The protective effect of Lemon Peel Essential Oil on Pancreas and Brain Oxidative Stress and Inflammation induced by Streptozotocin-Nicotinamide in rats: Behavioral and Biochemical Evidences. A H, ed. Res J Pharm Technol. Published online October 31, 2023: 4897-4906. doi:10.52711/0974-360X.2023.00794
30.    Bikri S, Talhaoui A, Fath N, Hsaini A, Benmhammed H, et al. Insulin supplemented with phenolic fraction concentrates displays anxiolytic and antidepressant-like properties with reductions of oxidative brain damage in chronically stressed diabetic rats. Journal of Herbmed Pharmacol. 2022a; 11(4): 562-574. doi: 10.34172/jhp.2022.65.
31.    Bikri S, Aboussaleh Y, Berrani A, Louragli I, Hafid A, Chakib S, Ahami A. Effects of date seeds administration on anxiety and depressive symptoms in streptozotocin-induced diabetic rats: biochemical and behavioral evidences. J Basic Clin Physiol Pharmacol. 2021; Mar 12; 32(6):1031-1040. doi: 10.1515/jbcpp-2020-0225. PMID: 33705613.
32.    Bourin M, Hascoët M. The mouse light/dark box test. Eur J Pharmacol. 2003; 463(1-3): 55-65. doi:10.1016/S0014-2999(03)01274-3
33.    Bikri S, Fath N, El Aboubi M, Hsaini A, Hindi Z, Benmhammed H et al. Phenolic fraction concentrates supplementation ameliorates learning and memory impairments in chronically stressed streptozotocin-diabetic rats by reducing brain tumor necrosis factor-α. Journal of Herbmed Pharmacol. 2022b; 11(4): 592-603. doi: 10.34172/jhp.2022.68
34.    Bikri Samir, Fath Nada, El Aboubi Meriam, Mouloud Lamtai, Benloughmari Douae & Aboussaleh Youssef (2024) Synergistic effects of melatonin and hydrogen sulfide in alleviating cognitive decline and BDNF dysregulation in a rat model of depression, Egyptian Journal of Basic and Applied Sciences, 11: 1, 334-353, DOI: 10.1080/2314808X.2024.234397435.
35.    Draper HH, Hadley M. [43] Malondialdehyde determination as index of lipid Peroxidation. In: Methods in Enzymology. Vol 186. Elsevier; 1990: 421-431. doi:10.1016/0076-6879(90)86135-I
36.    Freitas RM, Sousa FCF, Vasconcelos SMM, Viana GSB, Fonteles MMF. Pilocarpine-induced status epilepticus in rats: lipid peroxidation level, nitrite formation, GABAergic and glutamatergic receptor alterations in the hippocampus, striatum and frontal cortex. Pharmacol Biochem Behav. 2004; 78(2): 327-332. doi:10.1016/j.pbb.2004.04.004
37.    Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol Baltim Md 1950. 1992; 149(8): 2736-2741.
38.    Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971; 44(1): 276-287. doi:10.1016/0003-2697(71)90370-8
39.    Gomathi S, Sundaram RS, Vijayabaskaran M, Kannan C, Sambathkumar R. Pedalium murex Linn leaves against LPS-induced oxidative stress, anxiety and depression behavioural alterations in rats. Res J Pharm Technol. 2017; 10(5): 1333. doi:10.5958/0974-360X.2017.00236.0
40.    D’Souza UP, Joshi H, Alsheena N. Anti-anxiety effect of Aerva lanata (L.) using mice model. Res J Pharm Technol. 2020; 13(2): 565. doi:10.5958/0974-360X.2020.00106.7
41.    Al-Kubaisi ZA, Al-Shmgani HS, Salman MJ. Evaluation of In vivo and In vitro protective effects of quercetin on lipopolysaccharide-induced inflammation and cytotoxicology. Res J Pharm Technol. 2020; 13(8): 3897. doi:10.5958/0974-360X.2020.00690.3
42.    Pitman RK, Rasmusson AM, Koenen KC, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012; 13(11): 769-787. doi:10.1038/nrn3339
43.    Freund N, Thompson BS, Denormandie J, Vaccarro K, Andersen SL. Windows of vulnerability: maternal separation, age, and fluoxetine on adolescent depressive-like behavior in rats. Neuroscience. 2013; 249: 88-97. doi:10.1016/j.neuroscience.2013.06.066
44.    Czarnabay D, Dalmago J, Martins AS, et al. Repeated three-hour maternal deprivation as a model of early-life stress alters maternal behavior, olfactory learning and neural development. Neurobiol Learn Mem. 2019; 163: 107040. doi:10.1016/j.nlm.2019.107040
45.    Faravelli C, Lo Sauro C, Godini L, et al. Childhood stressful events, HPA axis and anxiety disorders. World J Psychiatry. 2012; 2(1): 13-25. doi:10.5498/wjp.v2.i1.13
46.    Kumar Mishra R, Mishra A, Gupta A. Promiscuous or Dirty drug with Multifunctional Druggability nature of Curcumin (Curcuma longa Linn.); Repurposing in propranolol withdrawal-induced OCD related Anxiety: A promising drug discovery besides One-Drug-One-Receptor approach via in silico in vivo studies. Res J Pharm Technol. Published online July 29, 2022: 2898-2908. doi:10.52711/0974-360X.2022.00484
47.    Mp G, P Shetty N, Joshi H. Attenuation of Experimentally Induced Anxiety by Panchagavya Ghrita in Mice. Res J Pharm Technol. Published online November 24, 2022: 4897-4900. doi:10.52711/0974-360X.2022.00822
48.    Fernandes Z, Khandige PS, D’Souza UP. Anxiolytic potential of Perseaamericana M. by elevated plus maze test. Res J Pharm Technol. 2020; 13(7): 3326. doi:10.5958/0974-360X.2020.00590.9
49.    Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp JoVE. 2015; (96):e52434. doi:10.3791/52434
50.    Valvassori SS, Varela RB, Quevedo J. Animal Models of Mood Disorders: Focus on Bipolar Disorder and Depression. In: Animal Models for the Study of Human Disease. Elsevier; 2017: 991-1001. doi:10.1016/B978-0-12-809468-6.00038-3
51.    Jin S, Zhao Y, Jiang Y, et al. Anxiety-like behaviour assessments of adolescent rats after repeated maternal separation during early life. Neuroreport. 2018; 29(8): 643-649. doi:10.1097/WNR.0000000000001010
52.    Miragaia AS, de Oliveira Wertheimer GS, Consoli AC, et al. Maternal Deprivation Increases Anxiety- and Depressive-Like Behaviors in an Age-Dependent Fashion and Reduces Neuropeptide Y Expression in the Amygdala and Hippocampus of Male and Female Young Adult Rats. Front Behav Neurosci. 2018; 12:159. doi:10.3389/fnbeh.2018.00159
53.    Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007; 2(2): 322-328. doi:10.1038/nprot.2007.44
54.    Kwak HR, Lee JW, Kwon KJ, et al. Maternal social separation of adolescent rats induces hyperactivity and anxiolytic behavior. Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol. 2009; 13(2): 79-83. doi:10.4196/kjpp.2009.13.2.79
55.    Gould TD, ed. Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests. Vol 42. Humana Press; 2009. doi:10.1007/978-1-60761-303-9
56.    Belovicova K, Bogi E, Csatlosova K, Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip Toxicol. 2017; 10(1): 40-43. doi:10.1515/intox-2017-0006
57.    Xu H, Ye Y, Hao Y, et al. Sex differences in associations between maternal deprivation and alterations in hippocampal calcium-binding proteins and cognitive functions in rats. Behav Brain Funct BBF. 2018; 14(1):10. doi:10.1186/s12993-018-0142-y
58.    Macrì S, Laviola G. Single episode of maternal deprivation and adult depressive profile in mice: interaction with cannabinoid exposure during adolescence. Behav Brain Res. 2004; 154(1): 231-238. doi:10.1016/j.bbr.2004.02.009
59.    Yankelevitch-Yahav R, Franko M, Huly A, Doron R. The forced swim test as a model of depressive-like behavior. J Vis Exp JoVE. 2015; (97): 52587. doi:10.3791/52587
60.    Bangasser DA, Wicks B. Sex-specific mechanisms for responding to stress. J Neurosci Res. 2017; 95(1-2): 75-82. doi:10.1002/jnr.23812
61.    Kentrop J, Smid CR, Achterberg EJM, et al. Effects of Maternal Deprivation and Complex Housing on Rat Social Behavior in Adolescence and Adulthood. Front Behav Neurosci. 2018;12:193. doi:10.3389/fnbeh.2018.00193
62.    Maeng LY, Milad MR. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Horm Behav. 2015; 76: 106-117. doi:10.1016/j.yhbeh.2015.04.002
63.    Altemus M, Sarvaiya N, Neill Epperson C. Sex differences in anxiety and depression clinical perspectives. Front Neuroendocrinol. 2014; 35(3): 320-330. doi:10.1016/j.yfrne.2014.05.004
64.    Uysal N, Gonenc S, Acikgoz O, et al. Age-dependent effects of maternal deprivation on oxidative stress in infant rat brain. Neurosci Lett. 2005; 384(1-2): 98-101. doi:10.1016/j.neulet.2005.04.052
65.    Horn SR, Leve LD, Levitt P, Fisher PA. Childhood adversity, mental health, and oxidative stress: A pilot study. PloS One. 2019;14(4):e0215085. doi:10.1371/journal.pone.0215085
66.    Marković B, Radonjic NV, Jevtić G, et al. Long-Term Effects of Maternal Deprivation on Redox Regulation in Rat Brain: Involvement of NADPH Oxidase. Oxid Med Cell Longev. 2017; 2017: 7390516. doi:10.1155/2017/7390516
67.    Menezes J, Neves BH, Souza M, Mello-Carpes PB. Green tea protects against memory deficits related to maternal deprivation. Physiol Behav. 2017; 182: 121-127. doi:10.1016/j.physbeh.2017.10.010
68.    Fatima M, Srivastav S, Ahmad MH, Mondal AC. Effects of chronic unpredictable mild stress induced prenatal stress on neurodevelopment of neonates: Role of GSK-3β. Sci Rep. 2019; 9(1): 1305. doi:10.1038/s41598-018-38085-2
69.    Zghari O, Lamtai M, Azirar S, et al. Neuroprotective Effects of Melatonin Against Neurotoxicity Induced by Intrahippocampal Injection of Aluminum in Male Wistar Rats: Possible Involvement of Oxidative Stress Pathway. Adv Anim Vet Sci. 2023; 11(5). doi:10.17582/journal.aavs/2023/11.5.711.719
70.    Zghari O, Azirar S, Lamtai M, El Hessni A, Ouichou A, Mesfioui A. Melatonin counteracts aluminum-induced affective and cognitive disorders and oxidative damage in male wistar rats. Neurosci Behav Physiol. 2023; 53(6): 917-928. doi:10.1007/s11055-023-01465-x
71.    B. Jadhav G, R. Sable R. Gramine and zingerone mitigates neuroinflammation related depressive behaviour induced by chronic unpredictable mild stress in rat. Res J Pharm Technol. Published online July 24, 2023: 3067-3074. doi:10.52711/0974-360X.2023.00504
72.    Fagundes CP, Glaser R, Kiecolt-Glaser JK. Stressful early life experiences and immune dysregulation across the lifespan. Brain Behav Immun. 2013; 27(1): 8-12. doi:10.1016/j.bbi.2012.06.014
73.    Nouri A, Hashemzadeh F, Soltani A, Saghaei E, Amini-Khoei H. Progesterone exerts antidepressant-like effect in a mouse model of maternal separation stress through mitigation of neuroinflammatory response and oxidative stress. Pharm Biol. 2020; 58(1): 64-71. doi:10.1080/13880209.2019.1702704
74.    Sadeghi M, Peeri M, Hosseini MJ. Adolescent voluntary exercise attenuated hippocampal innate immunity responses and depressive-like behaviors following maternal separation stress in male rats. Physiol Behav. 2016; 163: 177-183. doi:10.1016/j.physbeh.2016.05.017
75.    Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016; 12(1): 49-62. doi:10.1038/nrrheum.2015.169
76.    Sochocka M, Diniz BS, Leszek J. Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol. 2017; 54(10): 8071-8089. doi:10.1007/s12035-016-0297-1

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available