Author(s):
I Wayan Mudianta, I Putu Parwata, I Gusti Ngurah Agung Suryaputra, Edwin Setiawan, Suciati, Muhammad Hanafi, Marianna Carbone
Email(s):
mudianta@undiksha.ac.id
DOI:
10.52711/0974-360X.2024.00520
Address:
I Wayan Mudianta1*, I Putu Parwata1, I Gusti Ngurah Agung Suryaputra1, Edwin Setiawan2, Suciati3, Muhammad Hanafi4, Marianna Carbone5
1Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Pendidikan Ganesha, Singaraja, Bali 81116 Indonesia.
2Department of Biology, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
3Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, East Java, Surabaya, 60115, Indonesia.
4Research Centre for Chemistry - National Research and Innovation Agency (BRIN), Indonesia.
5Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli (Na), Italy.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
The high incidence of Alzheimer’s disease (AD) required a continued exploration of promising molecules that demonstrated good affinities with the pharmacological targets of AD. This study presented cholinesterase (ChE) inhibitor screening of sponge extracts from under-explored waters, in Bali, Indonesia. The study identified ten sponges whose extracts exhibited low to high AChE inhibition percentages. One of the sponge extracts, Petrosia nigricans, displayed the highest inhibition 95.17%. Subsequent chromatographic purification of the extract returned a known pentacyclic hydroquinone, halenaquinolsulfate (HQS). This report was the first study on identifying HQS from the sponge of the genus Petrosia. Next, the compound displayed moderate acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitions with IC50values of 40.73±0.19 µg/mL and 53.12±0.32µg/mL respectively. This study expands the cholinesterase activities of the pentacyclic hydroquinone class of compounds isolated from marine sponges.
Cite this article:
I Wayan Mudianta, I Putu Parwata, I Gusti Ngurah Agung Suryaputra, Edwin Setiawan, Suciati, Muhammad Hanafi, Marianna Carbone. Cholinesterase Inhibitory Activities of Halenaquinolsulfate from the Sponge Petrosia nigricans. Research Journal of Pharmacy and Technology. 2024; 17(7):3329-3. doi: 10.52711/0974-360X.2024.00520
Cite(Electronic):
I Wayan Mudianta, I Putu Parwata, I Gusti Ngurah Agung Suryaputra, Edwin Setiawan, Suciati, Muhammad Hanafi, Marianna Carbone. Cholinesterase Inhibitory Activities of Halenaquinolsulfate from the Sponge Petrosia nigricans. Research Journal of Pharmacy and Technology. 2024; 17(7):3329-3. doi: 10.52711/0974-360X.2024.00520 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-53
REFERENCES:
1. Ghoran SH, Kijjoa A. Marine-Derived Compounds with Anti-Alzheimer’s Disease Activities. Mar Drugs. 2021; 19(8): 410. https://doi.org/10.3390/md19080410.
2. Jadhav RP, Kengar MD, Narule O V., Koli VW, Kumbhar SB. A Review on Alzheimer’s Disease (AD) and its Herbal Treatment of Alzheimer’s Disease. Asian J Res Pharm Sci. 2019; 9(2): 112. https://doi.org/10.5958/2231-5659.2019.00017.1.
3. Kumar DR, Shankar MS, Reddy PP, Kumar BRS, Sumalatha N. A Review on Alzheimer’s Disease. Res. J. Pharmacol Pharmacodynamics. 2014; 6(1): 59–63.
4. Dhinakaran S, Tamilanban T, Chitra V. Targets for Alzheimer’s Disease. Res. J. Pharm. Technol. 2019; 12(6): 3073. https://doi.org/10.5958/0974-360X.2019.00521.3.
5. Dhananjayan K, Sumathy A, Palanisamy S. Molecular Docking Studies and in-vitro Acetylcholinesterase Inhibition by Terpenoids and Flavonoids. Asian. J. Res. Chem. 2013; 6(11): 1011–7.
6. Sandeep Reddy CH, Sree Kumar Reddy G, Mahto MK, Kunala P, Chaitanya Kanth R. Insilico design and discovery of some novel ache inhibitors for treatment of Alzheimer’s disorder. Res. J. Pharm. Technol. 2012; 5(3): 424–7.
7. Cummings JL, Tong G, Ballard C. Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J Alzheimer’s Dis. 2019; 67(3): 779–94. https://doi.org/10.3233/JAD-180766.
8. Cacabelos R. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat 2007; 3(3): 303–33.
9. Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 2020; 19(2): 147–57. https://doi.org/10.1080/14740338.2020.1721456.
10. Athitya LVS, Bharath VMV, Nellore J, Prakash P. Screening of Gracilaria corticata Extracts for Acetylcholinesterase Inhibitory Activity. Res. J. Pharm. Technol. 2018; 11(9): 3848. https://doi.org/10.5958/0974-360X.2018.00704.7.
11. Chitra V, Narayanan J. In vitro Screening for Anti-Cholinesterase and Anti Oxidant Activity of Extract of Garcinia hanburyi. Res. J. Pharm. Technol. 2018; 11(7): 2918. https://doi.org/10.5958/0974-360X.2018.00538.3.
12. Fristiohady A, Malaka MH, Safitri ARW, et al. Anti-inflammatory activity of ethanol extract of marine sponge petrosia sp. By supression the level of tumor necrosis factor-alpha. Res J Pharm Technol 2021; 14(8): 4435–9. https://doi.org/10.52711/0974-360X.2021.00770.
13. Beedessee G, Ramanjooloo A, Surnam-Boodhun R, van Soest RWM, Marie DEP. Acetylcholinesterase-Inhibitory Activities of the Extracts from Sponges Collected in Mauritius Waters. Chem Biodivers 2013; 10(3): 442–51. https://doi.org/10.1002/cbdv.201200343.
14. Suciati, Rabgay K, Fachrunniza Y, et al. Enzyme inhibitory activities of marine sponges against cholineesterase and 5α-reductase. Malays Appl Biol. 2019; 48(3): 77–8.
15. Komersová A, Komers K, Čegan A. New Findings about Ellman’s Method to Determine Cholinesterase Activity. Zeitschrift Für Naturforsch C 2007;62(1–2):150–4. https://doi.org/10.1515/znc-2007-1-225.
16. Bhanukiran K, Singh R, T A G, et al. Vasicinone, a pyrroloquinazoline alkaloid from Adhatoda vasica Nees enhances memory and cognition by inhibiting cholinesterases in Alzheimer’s disease. Phytomedicine Plus 2023; 3(2): 100439. https://doi.org/10.1016/j.phyplu.2023.100439.
17. Andrisano V, Naldi M, De Simone A, Bartolini M. A patent review of butyrylcholinesterase inhibitors and reactivators 2010–2017. Expert Opin Ther Pat 2018; 28(6): 455–65. https://doi.org/10.1080/13543776.2018.1476494.
18. Košak U, Brus B, Knez D, et al. The Magic of Crystal Structure-Based Inhibitor Optimization: Development of a Butyrylcholinesterase Inhibitor with Picomolar Affinity and in Vivo Activity. J Med Chem 2018; 61(1): 119–39. https://doi.org/10.1021/acs.jmedchem.7b01086.
19. Kobayashi M, Shimizu N, Kyogoku Y, Kitagawa I. Halenaquinol and halenaquinol sulfate, pentacyclic hydroquinones from the Okinawan marine sponge Xestospongia sapra. Chem Pharm Bull 1985; 33(3): 1305–8. https://doi.org/10.1248/cpb.33.1305.
20. Harada N, Uda H, Kobayashi M, Shimizu N, Kitagawa I. Absolute stereochemistry of the halenaquinol family, marine natural products with a novel pentacyclic skeleton, as determined by the theoretical calculation of circular dichroism spectra. J Am Chem Soc. 1989; 111(15): 5668–74. https://doi.org/10.1021/ja00197a025.
21. Alvi KA, Rodriguez J, Diaz MC, et al. Protein tyrosine kinase inhibitory properties of planar polycyclics obtained from the marine sponge Xestospongia cf. carbonaria and from total synthesis. J. Org. Chem. 1993; 58(18): 4871–80. https://doi.org/10.1021/jo00070a023.
22. Longeon A, Copp BR, Roué M, et al. New bioactive halenaquinone derivatives from South Pacific marine sponges of the genus Xestospongia. Bioorg Med Chem 2010; 18(16): 6006–11. https://doi.org/10.1016/j.bmc.2010.06.066.
23. Bermingham A, Price E, Marchand C, et al. Identification of Natural Products That Inhibit the Catalytic Function of Human Tyrosyl-DNA Phosphodiesterase (TDP1). SLAS Discov 2017; 22(9): 1093–105. https://doi.org/10.1177/2472555217717200.
24. Shioda M, Kano K, Kobayashi M, et al. Differential inhibition of eukaryotic DNA polymerases by halenaquinol sulfate, a p -hydroquinone sulfate obtained from a marine sponge. FEBS Lett. 1994; 350(2–3): 249–52. https://doi.org/10.1016/0014-5793(94)00777-2.
25. Ikegami S, Kajiyama N, Ozaki Y, et al. Selective inhibition of membrane fusion events in echinoderm gametes and embryos by halenaquinol sulfate. FEBS Lett 1992; 302(3): 284–6. https://doi.org/10.1016/0014-5793(92)80460-X.
26. Lee Y-J, Cho Y, Tran HNK. Secondary Metabolites from the Marine Sponges of the Genus Petrosia: A Literature Review of 43 Years of Research. Mar Drugs 2021; 19(3): 122. https://doi.org/10.3390/md19030122.
27. Ashour M, Edrada-Ebel R, Ebel R, Wray V, van Soest RWM, Proksch P. New Purine Derivatives from the Marine Sponge Petrosia nigricans. Nat Prod Commun. 2008; 3(11): 1934578X0800301. https://doi.org/10.1177/1934578X0800301119.
28. Nhiem NX, Van Quang N, Van Minh C, et al. Biscembranoids from the Marine Sponge Petrosia Nigricans. Nat Prod Commun 2013; 8(9): 1934578X1300800. https://doi.org/10.1177/1934578X1300800905.
29. Mama RL, Gelani CD, Daluz JMT, Uy MM, Ohta E, Ohta S. Two new sarasinosides from marine sponge Petrosia nigricans. Nat Prod Res. 2023: 1–9. https://doi.org/10.1080/14786419.2023.2175359.
30. Tanokashira N, Kukita S, Kato H, et al. Petroquinones: trimeric and dimeric xestoquinone derivatives isolated from the marine sponge Petrosia alfiani. Tetrahedron. 2016; 72(35): 5530–40. https://doi.org/10.1016/j.tet.2016.07.045.
31. Gorshkova IA, Gorshkov BA, Fedoreev SA, Shestak OP, Novikov VL, Stonik VA. Inhibition of membrane transport ATPases by halenaquinol, a natural cardioactive pentacyclic hydroquinone from the sponge Petrosia seriata. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol. 1999; 122(1): 93–9. https://doi.org/10.1016/S0742-8413(98)10084-1.