Author(s):
Dita Saraswati Suwardi, Irma Josefina Savitri, Chiquita Prahasanti, Novendy Yoyada, Agung Krismariono
Email(s):
chiquita-p-s@fkg.unair.ac.id
DOI:
10.52711/0974-360X.2024.00530
Address:
Dita Saraswati Suwardi1, Irma Josefina Savitri2, Chiquita Prahasanti2*, Novendy Yoyada3, Agung Krismariono2
1Periodontology Specialist Program Student, Faculty of Dental Medicine, Universitas Airlangga, Indonesia.
2Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Indonesia.
3Department of Periodontology, Faculty of Dental Medicine, Universitas Hang Tuah, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
Periodontal tissue damage in the form of periodontitis can be treated by surgical and non-surgical. Phase augmentation surgery can be done by adding a graft to stimulate bone growth. One of the augmentation materials for the treatment of periodontal bone defects is a tooth graft. The required augmentation materials for use are non-toxic and biocompatible. This research aimed to determine the viability of tooth grafts against Baby Hamster Kidney 21(BHK-21) fibroblasts cell cultures. This experiment is an experimental laboratory study on cell cultures by post-only control group design. In this study, there are seven treatments: small size particle 0.2g; small size particle 0.4g; medium size particle 0.2g; medium size particle 0.4g; large size particle 0.2g; large size particle 0.4g. An MTT assay test was performed, and the absorbance was observed using the ELISA reader with a wavelength of 600nm. A one-way ANOVA test is performed to determine the difference between the treatment groups, using post hoc Tamhane’s T2 test because the data are not homogeneous. Different test results showed all values of p>0.05. This means that there are no significant differences between all groups. The tooth graft has high viability for the fibroblast cells.
Cite this article:
Dita Saraswati Suwardi, Irma Josefina Savitri, Chiquita Prahasanti, Novendy Yoyada, Agung Krismariono. Viability Test on Various Size Tooth Grafts in Cultured Fibroblasts (BHK 21). Research Journal of Pharmacy and Technology. 2024; 17(7):3394-8. doi: 10.52711/0974-360X.2024.00530
Cite(Electronic):
Dita Saraswati Suwardi, Irma Josefina Savitri, Chiquita Prahasanti, Novendy Yoyada, Agung Krismariono. Viability Test on Various Size Tooth Grafts in Cultured Fibroblasts (BHK 21). Research Journal of Pharmacy and Technology. 2024; 17(7):3394-8. doi: 10.52711/0974-360X.2024.00530 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-63
REFERENCES:
1. Chang P Sen, Huang CJ, Hsiang CL, Lai H, Tsai AI. Prevalence of dental caries and periodontal disease of high school students aged 15 to 18 years in Taiwan. Int J Environ Res Public Health. 2021; 18(19). doi:10.3390/ijerph18199967
2. Cho YD, Kim KH, Lee YM, Ku Y, Seol YJ. Periodontal wound healing and tissue regeneration: A narrative review. Pharmaceuticals. 2021; 14(5): 1-17. doi:10.3390/ph14050456
3. Abood FM, Conserv GAAHD, Witwit LJ, Hindi NKK, Khmra HKAA, Ali MRA. The occurrence of alveolar bone resorption with oral bacterial infection. Res. J. Pharm. Technol. 2017; 10(6). doi:10.5958/0974-360X.2017.00349.3
4. Manohar J, Asha. Anti-protease activity of Lavender on Chronic Periodontitis patients-An Ex-vivo study. Asian J. Pharm. Res. 2020; 10(2). doi:10.5958/2231-5691.2020.00018.0
5. Kwon TH, Lamster IB, Levin L. Current concepts in the management of periodontitis. Int Dent J. 2020; 0: 1-15. doi:10.1111/idj.12630
6. Gauthier R, Jeannin C, Attik N, Trunfio-Sfarghiu AM, Gritsch K, Grosgogeat B. Tissue Engineering for Periodontal Ligament Regeneration: Biomechanical Specifications. J Biomech Eng. 2021; 143(3). doi:10.1115/1.4048810
7. Galli M, Yao Y, Giannobile W V., Wang H-L. Current and future trends in periodontal tissue engineering and bone regeneration. Plast Aesthetic Res. 2021; 2021 .doi:10.20517/2347-9264.2020.176
8. Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J. Dent Sci. 2021; 16(1): 501-507. doi:10.1016/j.jds.2020.07.008
9. Porta M, Tonda-Turo C, Pierantozzi D, Ciardelli G, Mancuso E. Towards 3d multi-layer scaffolds for periodontal tissue engineering applications: Addressing manufacturing and architectural challenges. Polymers (Basel). 2020; 12(10): 1-20. doi:10.3390/polym12102233
10. Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: A review. Biomater Res. 2017; 21(1): 1-20. doi:10.1186/s40824-017-0095-5
11. Adventa Y, Zubaidah N. The Role Of Hydroxyapatite Materials On Collagen Synthesis In Alveolar Bone Defects Healing. Conserv Dent J. 2021; 11(1): 24. doi:10.20473/cdj.v11i1.2021.24-27
12. Rianti D, Kristanto W, Damayanti H, et al. The Characteristics and Potency of Limestone-based carbonate hydroxyapatite to Viability and Proliferation of Human Umbilical Cord Mesenchymal Stem Cell. Res. J. Pharm. Technol. 2022; 15(5). doi:10.52711/0974-360X.2022.00380
13. Prahasanti C, Perdana S. The Roles of Insulin Growth Factors-1 (IGF-1) in Bone Graft to increase Osteogenesis. Res J Pharm Technol. 2022; 15(4). doi:10.52711/0974-360X.2022.00291
14. Forouzanfar A, Radvar M, Shayesteh E, Mohammadipour HS. Clinical assessment of a synthetic biomaterial containing hydroxyapatite and beta tricalcium phosphate in socket preservation. Res. J. Pharm. Technol. 2022; 15(11): 5126-5131. doi:10.52711/0974-360X.2022.00862
15. Ganta GK, Alla RK, Cheruvu K, Guduri BR. Bone Grafts: An Overview of Bone Remodeling, Types and Recent Advances. Res J Pharm Technol. 2021; 14(11): 6101-6105. doi:10.52711/0974-360X.2021.01060
16. Jain MR, Gheena S. Dentin Comparison in Primary and Permanent Molars under Compound Light Microscopy: A Study. Res J Pharm Technol. 2015; 8(10): 1369. doi:10.5958/0974-360x.2015.00245.0
17. Kim Y-K, Lee J, Um I-W, et al. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg. 2013; 39(3): 103. doi:10.5125/jkaoms.2013.39.3.103
18. Cristine R, Barcelos S, Terra TG. revisão de literatura. 2018; 66(4): 361-367.
19. Ivanova N, Gugleva V, Dobreva M, Pehlivanov I, Stefanov S, Andonova V. We Are IntechOpen, the World’ s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1 %. Vol i.; 2016.
20. Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Front. 2020; 1(3): 332-349. doi:10.1002/fft2.44
21. Prahasanti C, Wulandari DT, Ulfa N. Viability test of fish scale collagen (Oshpronemus gouramy) on baby hamster kidney fibroblasts-21 fibroblast cell culture. Vet World. 2018; 11(4). doi:10.14202/vetworld.2018.506-510
22. Freshney RI. Culture of Animal Cells. John Wiley & Sons, Inc.; 2010. doi:10.1002/9780470649367
23. Yadav S, Srivastava R. Role of Fibroblast in Periodontal Heath and Disease: An Overview. Asian J. Oral Heal Allied Sci. 2017; 7(1): 21-31.
24. Saputra B, Kresnoadi U. Toxicity test of shrimp shell (Litopenaeus Vannamei) chitosan as bone graft scaffold on BHK-21 fibroblast cell cultures. 2020; 3751(April):3747-3751.
25. Singh S, Pal A, Mohanty S. Nano structure of hydroxyapatite and its modern approach in pharmaceutical science. Res J Pharm Technol. 2019; 12(3). doi:10.5958/0974-360X.2019.00243.9
26. Raj BJR, Pradeep. Remineralising agents in dentistry. Res. J. Pharm. Technol. 2016; 9(10). doi:10.5958/0974-360X.2016.00349.8
27. Kamadjaja MJK, Salim S, Subiakto BDS. Application of hydroxyapatite scaffold from portunus pelagicus on opg and rankl expression after tooth extraction of cavia cobaya. Res J Pharm Technol. 2021; 14(9): 4647-4651. doi:10.52711/0974-360X.2021.00807
28. Battafarano G, Rossi M, De Martino V, et al. Strategies for bone regeneration: From graft to tissue engineering. Int J Mol Sci. 2021; 22(3): 1-22. doi:10.3390/ijms22031128
29. Wang B, Wu B, Jia Y, et al. Neural peptide promotes the angiogenesis and osteogenesis around oral implants. Cell Signal. 2021; 79(14). doi:10.1016/j.cellsig.2020.109873
30. Khanijou M, Seriwatanachai D, Boonsiriseth K, et al. Bone graft material derived from extracted tooth: A review literature. J Oral Maxillofac Surgery, Med Pathol. 2019; 31(1): 1-7. doi:10.1016/j.ajoms.2018.07.004
31. da Silva de Oliveira JC, Luvizuto ER, Sonoda CK, Okamoto R, Garcia-Junior IR. Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats. Oral Maxillofac Surg. 2017; 21(2). doi:10.1007/s10006-017-0624-3
32. Binderman DI, Hallel G, Nardy C, Yaffe A, Sapoznikov L. Processing extracted teeth for immediate grafting of autogenous dentin. Implant Pract. 2012; 8(2): 43-46.
33. Koga T, Minamizato T, Kawai Y, et al. Bone regeneration using dentin matrix depends on the degree of demineralization and particle size. PLoS One. 2016; 11(1): 1-12. doi:10.1371/journal.pone.0147235
34. Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014; 49(4): 1461-1475. doi:10.1007/s10853-013-7864-x
35. Fujioka-Kobayashi M, Katagiri H, Kono M, Schaller B, Iizuka T, Safi AF. The impact of the size of bone substitute granules on macrophage and osteoblast behaviors in vitro. Clin Oral Investig. 2021; 25(8): 4949-4958. doi:10.1007/s00784-021-03804-z
36. Perdana S, Prahasanti C, Bargowo L, Prasetyo S, Riawan W. The Analysis of MMP-13 Expression on Hydroxyapatite Tooth Graft Application Compared to Hydroxyapatite Xenograft. Res J Pharm Technol. 2023; 16(1). doi:10.52711/0974-360X.2023.00048
37. Brum IS, Elias CN, de Carvalho JJ, Pires JLS, Pereira MJS, de Biasi RS. Properties of a bovine collagen type I membrane for guided bone regeneration applications. E-Polymers. 2021; 21(1): 210-221. doi:10.1515/epoly-2021-0021