Author(s):
Zeenath Banu, Ayesha Qhursheed, A. Alekya, B. Shirisha, B.V. Mounika, B. Divya
Email(s):
banu.zeenath106@gmail.com
DOI:
10.52711/0974-360X.2024.00531
Address:
Zeenath Banu1*, Ayesha Qhursheed2, A. Alekya2, B. Shirisha2, B.V. Mounika, B. Divya2
1Senior Assistant Professor, Department of Pharmacology, RBVRR Women's College of Pharmacy, Barkhatpura, Hyderabad - 500027, Telangana, India.
2Department of Pharmacology, RBVRR Women's College of Pharmacy, Barkhatpura, Hyderabad, Telangana – 500027.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
This study was designed to investigate the phytoconstituents and antinociceptive effect of ethanolic extracts of Cosmos sulphureus (CS), Ruellia simplex (RS), and Hibiscus rosa sinensis (HR)flowers. The antinociceptive effect of flower extracts at two doses (100mg/kg and 200mg/kg) wasassessed using an acetic acid-induced writhing and tail immersion pain model.The flower extracts produced significant dose-dependent inhibition of nociceptive behaviour in the acetic acid-induced writhing test.When compared to the vehicle control group, the percentage of writhing inhibition reached around 70.7% and 69.07% in the groups of Hibiscus rosa sinensis and Cosmos sulphureus flower extracts that received the highest dose (200mg/kg). In the tail immersion method, the flower extracts showed a dose-dependent increase in the latency time and significantly (p<0.001) reduced pain as compared with the control group. Thus, flower extracts demonstrated peripheral and central antinociception via opioid receptor activation. The phytochemical analysis of flower extracts revealed that they contained alkaloids, glycosides, flavonoids, carbohydrates, steroids, tannins, and phenolic compounds. In conclusion,the flower extracts possess significant antinociceptive properties that are mediated through central and peripheral pathways.
Cite this article:
Zeenath Banu, Ayesha Qhursheed, A. Alekya, B. Shirisha, B.V. Mounika, B. Divya. Phytochemical and Pharmacological screening of Cosmos sulphureus, Ruellia simplex and Hibiscus rosa sinensis Flower Extracts for Antinociceptive activity. Research Journal of Pharmacy and Technology. 2024; 17(7):3399-4. doi: 10.52711/0974-360X.2024.00531
Cite(Electronic):
Zeenath Banu, Ayesha Qhursheed, A. Alekya, B. Shirisha, B.V. Mounika, B. Divya. Phytochemical and Pharmacological screening of Cosmos sulphureus, Ruellia simplex and Hibiscus rosa sinensis Flower Extracts for Antinociceptive activity. Research Journal of Pharmacy and Technology. 2024; 17(7):3399-4. doi: 10.52711/0974-360X.2024.00531 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-64
REFERENCES:
1. Bektas N, Nemutlu D, Ulugbay G, Arslan R. The role of muscarinic receptors in pain modulation. World Journal of Pharmaceutical and Medical Research. 2015; 1(1): 40-9. doi.org/10.1021/jm990607u.
2. Basavraj P, Nitin M. Antinociceptive activity of Tulsi Amrit (A Polyherbal Formulation) in selective pain induced models in rats. Res. J. Pharmacology and Pharmacodynamics. 2017; 9(4): 173-177. doi: 10.5958/2321-5836.2017.00029.5
3. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001; Sep 13; 413(6852): 203-10. https://doi.org/10.1038/35093019
4. Hucho T, Levine JD. Signalling pathways in sensitization: toward a nociceptor cell biology. Neuron. 2007; Aug 2; 55(3): 365-76. doi.org/10.1016/j.neuron.2007.07.008
5. Zendehdel M, Taati M, Jadidoleslami M, Bashiri A. Evaluation of pharmacological mechanisms of antinociceptive effect of Teucrium polium on visceral pain in mice.Iranian Journal of Veterinary Research. 2011; 12(4): 292–297. doi.org/10.1016/S1043-6618(03)00059-8
6. Sang CN. NMDA-receptor antagonists in neuropathic pain: experimental methods to clinical trials. Journal of Pain and Symptom Management. 2000; Jan 1; 19(1): 21-5. doi.org/10.1016/S0885-3924(99)00125-6
7. Sugiharti W, Trisyono YA, Martono E, Witjaksono W. The role of Turnera subulata and Cosmos sulphureus flowers in the life of Anagrus nilaparvatae (Hymenoptera: mymaridae). Jurnal Perlindungan Tanaman Indonesia. 2018; 22(1): 4 3-50. doi.org/10.22146/jpti.24806
8. Alexandos S Botsaris, plants with possible antimalarial activity, gathered from Ethnomedical reports published in FloralMedicinal, Journal of Ethnobiology and Ethnomedicine. 2007; 3(18): 1746-1755. Available from: doi.org/10.1186/1746-4269-3-18
9. Andrushchenko O, Vergun O, Rakhmetov D. Antioxidant capacity of Cosmos sulphureus plants grown in the temperate climate. Plant Introduction. 2022; Apr 28; 1(93/94): 37-45. doi.org/10.46341/PI2021021
10. Shital S. Phuse, Zia H. Khan. Evaluation for antioxidant potential and Hemolytic effect of cosmos sulphureusflower extract. Journal of Emerging Technologies and Innovative Research. 2018; 5:12: 29-35.
11. Jadav KM, Gowda KN. Preliminary phytochemical analysis and in vitro antioxidant activity of Araucaria columnaris bark peel and Cosmos sulphureus flowers. World. 2017; 12: 13. doi.org/10.3390/plants12040896
12. Megnigueu EM, Nyemb NJ, Ngwasiri NN, Fanta AS, Nveikoueing F, Kouam SF, Ndjonka D. In vitro anthelmintic activities of extracts and fractions of cosmos sulphureus Cav, against Onchocerca ochengi. Journal of Diseases and Medicinal Plants. 2020; 6(1): 22-30. doi.10.11648/j.jdmp.20200601.14
13. Saleem M, Ali HA, Akhtar MF, Saleem U, Saleem A, Irshad I. Chemical characterisation and hepatoprotective potential of Cosmos sulphureus Cav. and Cosmos bipinnatus Cav. Natural Product Research. 2019; Mar 19; 33(6): 897-900. doi.org/10.1080/14786419.2017.1413557
14. Venus B. Hinampus, Narain Nine Ann T. Natal. Antibacterial activity of cosmos sulphureus leaf extract. Herdinplus. 2017.
15. Ukwubile CA, Nettey H, Malgwi TS, Menkiti ND. Ruellia simplex C. Wright (Acanthaceae): Antinociceptive, anti-inflammatory, and antidiabetic activities of a novel fatty acid isolated from its leaf extract. International Journal of Plant Based Pharmaceuticals. 2023; 3(1): 32-40. doi.org/10.29228/ijpbp.13
16. Cletus AnesUkwubile, Henry Nettey, Troy Salvia Malawi, Nnamdi David Menkiti International Journal of Plant-based Pharmaceuticals 2022; 3(1); 32-40.
17. Nadzila Anindya, Tejaputri, Ade Arisanti, Fona Qorina, QotrunnadaFithrotunnisa Phytochemical Analysis and Antioxidant Propertyby DPPH radical scavengeractivity of Ruellia Brittoniana flower. 2019; 11(6); 24-28. doi.10.22159/ijap.2019.v11s6.33531
18. Andrushchenko O, Levon V. The content of flavonoids in Cosmos sulphureus. Plant Introduction. 2021; Apr 28; 1(89/90): 83-8. doi.org/10.46341/PI2021003
19. Aziz MA, Raduan SZ, Roslida AH, Zakaria ZA, Zuraini A, Hakim MN. Anti-Pyretic Activity of two Varieties of Hibiscus Rosa Sinensis L. Biomedical and Pharmacology Journal. 2021; Mar 30; 14(1): 61-74. doi.org/10.13005/bpj/2099
20. Prasanna R. Evaluation of antioxidant activity of phenol, Hibiscus rosa-sinensis, neem and leaves extract at different infusion times. Int. J. Adv. Res. Ideas Innov. Technol. 2017; 3: 281-6.
21. Hinaz N, Gayathri R, Vishnu V. Genotoxicity of Hibiscus rosa sinensis on oral cancer cell line. Int. J. Pharm. Sci. Rev. Res. 2017; 44(1): 21-3.
22. Pillai SS, Mini S. Polyphenols rich Hibiscus rosa sinensis Linn. petals modulate diabetic stress signalling pathways in streptozotocin-induced experimental diabetic rats. Journal of Functional Foods. 2016; Jan 1; 20: 31-42. doi.org/10.1016/j.jff.2015.10.007
23. Sahu CR. Mechanisms Involved in Toxicity of Liver Caused by Piroxicam in Mice and Protective Effects of Leaf Extract of Hibiscus rosa-sinensis L. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders. 2016; Jan; 9: CMAMD-S29463.
24. Sikarwar M, Patil M. Antihyperlipidemic activity of Hibiscus rosa-sinensis Linn. ethanolic extract fractions. International Journal of Health & Allied Sciences. 2015; Apr 1; 4(2): 73-
25. Annapurna A, Ramya G, Sheba D, Ch GK. Gastroprotective effect of flower extracts of Hibiscus rosa sinensis against acute gastric lesion models in rodents. Journal of Pharmacognosy and Phytochemistry. 2014; 3(3): 137-145.
26. Ruban P, Gajalakshmi K. In vitro antibacterial activity of Hibiscus rosa–sinensis flower extract against human pathogens. Asian Pacific Journal of Tropical Biomedicine. 2012; May 1; 2(5): 399-403. doi.org/10.1016/S2221-1691(12)60064-1
27. Shewale PB, Patil RA, Hiray YA. Antidepressant-like activity of anthocyanidins from Hibiscus rosa-sinensis flowers in tail suspension test and forced swim test. Indian Journal of Pharmacology. 2012; Jul; 44(4): 454.-457. doi.10.4103/0253-7613.99303
28. Kate IE, Lucky OO. The effects of aqueous extracts of the leaves of Hibiscus rosa-sinensis Linn. on renal function in hypertensive rats. African Journal of Biochemistry Research. 2010; Feb 28; 4(2): 43-46.
29. Shivananda Nayak B, Sivachandra Raju S, Orette FA, Chalapathi Rao AV. Effects of Hibiscus rosa sinensis L (Malvaceae) on wound healing activity: a preclinical study in a Sprague Dawley rat. The International Journal of Lower Extremity Wounds. 2007; Jun; 6(2): 76-81.doi.org/10.1177/15347346073028
30. Hajhashemi V, Ghannadi A, Pezeshkian SK. Antinociceptive and anti-inflammatory effects of Satureja hortensis L. extracts and essential oil. Journal of Ethnopharmacology. 2002; Oct 1; 82(2-3): 83-87. doi.org/10.1016/S0378-8741(02)00137-X
31. Khandelwal KR. Practical Pharmacognosy Technique and Experiments. Pune: Nirali Prakashan; 2005; 146–159.
32. WC E. Trease and Evans Pharmacognosy. Nottingham: University of Nottingham. 2002; 21.
33. Ozdemir H, Yaren B, Oto G. Antinociceptive activity of aqueous extract of Lepidium sativum L. in mice. Eastern Journal of Medicine. 2015; Jul 1; 20(3): 131-135.
34. Gawade S. Acetic acid induced painful endogenous infliction in writhing test on mice. Journal of Pharmacology and Pharmacotherapeutics. 2012; Oct 1; 3(4): 348. doi.10.4103/0976-500X.103699
35. Koster R. Acetic acid for analgesics screening. InFed proc 1959 (Vol. 18, 412-417).
36. Anitha Kumari, K.G. Lalitha, T. Venkatachalam, P. Kalaiselvi, M.G. Sethuraman. Anti-inflammatory and Antinociceptive activity of Pavonia zeylanica Linn . Asian J. Res. Pharm. Sci. 2011; 1(4): Oct.-Dec. 113-116.
37. Prakash M. Somade, Pramod Anil Patil, Suraj N. Mali, Pratibha S. Gavarkar, Rohan Sharadanand Phatak, Rajashree S. Chavan, Atul R. Chopade. Antinociceptive Investigations of Rubiadin in Chronic pain induced by Freund’s adjuvant in mice. Research Journal of Pharmacy and Technology 2023; 16(1): 31-4. doi: 10.52711/0974-360X.2023.00006
38. Vogel HG, Vogel WH. Analgesic, anti-inflammatory, and antipyretic activity. InDrug Discovery and Evaluation: Pharmacological Assays 1997; (360-420). Berlin, Heidelberg: Springer Berlin Heidelberg.
39. Olaleye SB, Farombi EO, Adewoye EA, Owoyele BV, Onasanwo SA, Elegbe RA. Analgesic and anti-inflammatory effects of kaviiron (a Garcinia kola seed extract). African Journal of Biomedical Research. 2000; 3(3): 171-174.
40. Melo MS, Sena LC, Barreto FJ, Bonjardim LR, Almeida JR, Lima JT, De Sousa DP, Quintans-Júnior LJ. Antinociceptive effect of citronellal in mice. Pharmaceutical Biology. 2010; Apr 1; 48(4): 411-416. doi.org/10.3109/13880200903150419
41. Connor J, Makonnen E, Rostom A. Comparison of analgesic effects of khat (Catha edulis Forsk) extract, D-amphetamine and ibuprofen in mice. Journal of Pharmacy and Pharmacology. 2000; Jan; 52(1): 107-110. doi.org/10.1211/0022357001773580
42. D'Amour FE, Smith DL. A method for determining loss of pain sensation. J.Pharmacol. Exp Ther. 1941; May 1; 72(1): 74-79.
43. Demsie DG, Yimer EM, Berhe AH, Altaye BM, Berhe DF. Anti-nociceptive and anti-inflammatory activities of crude root extract and solvent fractions of Cucumis ficifoliusin mice model. Journal of Pain Research. 2019; Apr. 30: 1399-1409.doi.org/10.2147/JPR.S193029