Author(s):
Bustanussalam, Yatri Hapsari, Fauzy Rachman, Eris Septiana, Partomuan Simanjuntak
Email(s):
bust003@brin.go.id , boest77@gmail.com
DOI:
10.52711/0974-360X.2024.00474
Address:
Bustanussalam1*, Yatri Hapsari1, Fauzy Rachman1, Eris Septiana1, Partomuan Simanjuntak2
1Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46 Cibinong 16911, Indonesia.
2Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46 Cibinong 16911, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 7,
Year - 2024
ABSTRACT:
The turmeric plant serves as a botanical origin of antioxidant compounds. One potential approach to expedite the generation of antioxidant compounds from turmeric involves the utilization of its endophytic fungi. Endophytic fungi, identified as microorganisms that inhabit plant tissues, demonstrate an ability to produce chemical compounds derived from host plants, thereby exhibiting potential as pharmaceutical agents. This study aims to isolate and characterize antioxidant compounds derived from turmeric endophytic fungus BoCiClD-2 extract. The chemical compounds originating from the fungus were obtained via a dynamic liquid fermentation process in a solution comprised of potato dextrose broth (PDB) on a rotary shaker over 12 days at ambient temperature. The crude extract was purified using column chromatography followed by 2-dimensional thin-layer chromatography. The antioxidant activities of the extract and fraction were assessed through the implementation of the DPPH free radical scavenging method. The active compounds were characterized by FTIR spectrophotometry, proton spectrophotometry, carbon, and DEPT NMR. EtOAc crude extract and fraction II from endophytic fungus have antioxidant activity with IC50 values of 96.08±0.06 and 96.23±0.09µg/mL, respectively. Then, fraction II.2, obtained from the second purification from fraction II, had the highest antioxidant activity of 51.85%. Interpretation of NMR spectrophotometer data from fraction II.2 showed that the compound suspected to have antioxidant activity was 3-hydroxy-4-methyl benzoic acid. Therefore, the endophytic fungus BoCiClD-2 has the potential for development as a generator of naturally occurring active compounds that possess antioxidant properties.
Cite this article:
Bustanussalam, Yatri Hapsari, Fauzy Rachman, Eris Septiana, Partomuan Simanjuntak. Isolation and Identification of Active Antioxidant compound derived from Endophytic Fungus BoCiClD-2 in Turmeric (Curcuma longa) plant. Research Journal of Pharmacy and Technology.2024; 17(7):3033-9. doi: 10.52711/0974-360X.2024.00474
Cite(Electronic):
Bustanussalam, Yatri Hapsari, Fauzy Rachman, Eris Septiana, Partomuan Simanjuntak. Isolation and Identification of Active Antioxidant compound derived from Endophytic Fungus BoCiClD-2 in Turmeric (Curcuma longa) plant. Research Journal of Pharmacy and Technology.2024; 17(7):3033-9. doi: 10.52711/0974-360X.2024.00474 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-7
REFERENCES:
1. Moon BS. Ryoo IJ. Yun BS. Bae KS. Lee KD. Yoo ID. Kim JP. Glyscavins A, B and C, new phenolic glycoside antioxidants produced by a fungus Mycelia sterilia F020054. The Journal of Antibiotics. 2006; 59(11): 735-739. https://doi.org/10.1038/ja.2006.99
2. Jangdey MS. Gupta A. Sah AK. Daharwal SJ. Role of antioxidants in developing novel delivery systems as longevity therapy. Res. J. Sci. Technol. 2014; 6(3): 119–127
3. M. Vaishali. Antioxidants in Health and Diseases. Research J. Pharm. and Tech. 2014; 7(4): 489-493
4. Amit R. Dayananda B. Ram KS. Jaya D. Phytochemical Screening and Antioxidant Activity of Sesbania grandiflora Leaves Extracts. Asian J. Res. Pharm. Sci. 2014; 4(1): 16-21.
5. Mathew J. Arora KM. Mazumdar A. Kumar G. Karthik L. Rao KVB. Evaluation of phytochemical composition and antioxidant activity of aqueous extract of Barleria mysorensis and Furcraea foetida leaves. Research J. Pharm. and Tech. 2012; 5(12): 1503-1508.
6. Momin MAM. Rashid M. Urmi KF. Rana S. Phytochemical Screening and Investigation of Antioxidant and Cytotoxicity Potential of different extracts of selected Medicinal Plants of Bangladesh. Research J. Pharm. and Tech. 2013; 6(9): 1042-1050.
7. Tanvir EM. Hossen MS. Hossain MA. Rizwana. Gan S. Khalil MK. Nurul. Antioxidant Properties of Popular Turmeric (Curcuma longa) Varieties from Bangladesh. Journal of Food Quality. 2017; (3): 1-8. https://doi.org/10.1155/2017/8471785
8. Priya R. Prathapan A. Raghu KG. Menon AN. Chemical composition and in vitro antioxidative potential of essential oil isolated from Curcuma longa L. leaves. Asian Pacific Journal of Tropical Biomedicine. 2012; 2(2): S695–S699. https://doi.org/10.1016/S2221-1691(12)60298-6.
9. Faujan NH. Rahim Z. Mohamed M. Faujan Bin H Ahmad. Comparative analysis of phenolic content and antioxidative activities of eight Malaysian traditional vegetables. Malaysian Journal of Analytical Science. 2015; 19(3): 611-624.
10. Gruyal G A. del Rosario RR. Phytochemical Profiles And Quantifications Of Flavonoid Contents Of Selected Herbs In Cantilan, Surigao Del Sur Philippines. SDSSU Multidisciplinary Research Journal. 2012; 2(2): 82-86.
11. Yadav M. Yadav A. Yadav JP. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pacific Journal of Tropical Medicine. 2014; 7S1(1): S256-61. https://doi.org/10.1016/S1995-7645(14)60242-X
12. Nicoletti R. Fiorentino A. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta. Agriculture. 2015; 5(4): 918-970. https://doi.org/10.3390/agriculture5040918.
13. Gunasekaran S. Sundaramoorthy S. Anitha U. Sathiavelu M. Arunachalam S. Endophytic fungi with antioxidant activity-a review. Research J. Pharm. and Tech. 2015; 8(6): 731-737. https://doi.org/10.5958/0974-360X.2015.00116.X
14. Abirami G. Boominathan M. Antioxidant Activity of Endophytic Fungi Isolated from Hugonia mystax L. Journal of Academia and Industrial Research (JAIR). 2016; 5(1): 10–13.
15. Gómez OC. Luiz JHH. Endophytic fungi isolated from medicinal plants: future prospects of bioactive natural products from Tabebuia/Handroanthus endophytes. Appl Microbiol Biotechnol. 2018; 102(21): 9105-9119. https://doi.org/10.1007/s00253-018-9344-3.
16. Milke L. Aschenbrenner J. Marienhagen J. Kallscheuer N. Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol. 2018; 102(4): 1575-1585. https://doi.org/10.1007/s00253-018-8747-5.
17. Jha DK. Bioprospecting for microbial endophytes and their natural products. NBU Journal of Plant Sciences. 2015; 9: 1-13. https://doi.org/10.55734/NBUJPS.2015.v09i01.001.
18. Silva SGM da. Melo BA de. Santos MT dos. Rios RRS. Santos CM de S. Júnior KALR. Maranhão FC de A et al. Endophytic fungi: Benefits for plants and biotechnological potential. Research, Society and Development. 2022; 11(4): e9211427008. https://doi.org/10.33448/rsd-v11i4.27008
19. Ludwig-Müller J. Plants and endophytes: equal partners in secondary metabolite production?. Biotechnol Lett. 2015; 37(7): 1325-34. https://doi.org/10.1007/s10529-015-1814-4.
20. Setianti, P. A. Isolasi Dan Identifikasi Senyawa Antioksidan Hasil Bioproduksi Kapang Endofit (K. Cl. Sb-R9) Dari Rimpang Kunyit (Curcuma longa Linn.) Asal Sukabumi.
21. Salini G. Madhusoodhanan A. Joseph AM. Mohan AC. Navya RK. Nair VV. Antibacterial and antioxidant potential of endophytic fungi isolated from mangroves. Der Pharmacia Lettre. 2015; 7(12): 53-57. http://scholarsresearchlibrary.com/archive.html
22. Vankar PS. Tiwari V. Shanker R. Srivastava J. Change in Antioxidant Activity of Spices-Turmeric and Ginger on Heat Treatment. Electronic Journal of Environmental, Agricultural and Food Chemistry. 2006; 5(2): 1313–1317.
23. Minarni. Artika IM. Julistiono H. Bermawie N. Riyanti EI. Hasim. Hasan AEZ. Anticancer activity test of ethyl acetate extract of endophytic fungi isolated from soursop leaf (Annona muricata L.). Asian Pac J Trop Med. 2017; 10(6): 566-571. https://doi.org/10.1016/j.apjtm.2017.06.004.
24. Rumidatul A. Rahmawati N. Sunarya S. Production of Secondary Metabolites and its Antibacterial and Antioxidant Activity During the Growth Period of Endophytic Fungi Isolated from Gall Rust Sengon Plants. Pharmacognosy Journal. 2020; 13(2): 325-331. https://doi.org/10.5530/pj.2021.13.42
25. Basha NS. Ogbaghebriel A. Yemane K. Zenebe M. Isolation and screening of endophytic fungi from Eritrean traditional medicinal plant Terminalia brownii leaves for antimicrobial activity. International Journal of Green Pharmacy. 2012; 6(1): 40. https://doi.org/10.4103/0973-8258.97124.
26. Bustanussalam. Rachman F. Septiana E. Lekatompessy SJ. Widowati T. Sukiman HI. Simanjuntak P. Screening for endophytic fungi from turmeric plant (Curcuma longa L.) of sukabumi and cibinong with potency as antioxidant compounds producer. Pakistan Journal of Biological Sciences. 2015; 18(1): 42-45. https://doi.org/10.3923/pjbs.2015.42.45
27. Zhu F. Chen X. Yuan Y. Huang M. Sun H. Xiang W. The Chemical Investigations of the Mangrove Plant Avicennia marina and its Endophytes. The Open Natural Products Journal. 2009; 2(1): 24-32. https://doi.org/10.2174/1874848100902010024.
28. Visalakchi S. Johnpaul M. Taxol (Anticancer Drug) producing endophytic fungi. International Journal of Pharma and Bio Sciences. 2010; 1(3): 1-9.
29. Septiana E. Simanjuntak P. Aktivitas Antimikroba Dan Antioksidan Ekstrak Beberapa Bagian Tanaman Kunyit (Curcuma longa). FITOFARMAKA Jurnal Ilmiah Farmasi. 2015; 5(1): 1–10 (2015). https://doi.org/10.33751/jf.v5i1.193.
30. Minami H. Kinoshita M. Fukuyama Y. Kodama M. Yoshizawa T. Sugiura M. Nakagawa K. Tago H. Antioxidant xanthones from Garcinia subelliptica. Phytochemistry. 1994; 36(2): 501–506. https://doi.org/10.1016/S0031-9422(00)97103-6.
31. Elfita Muharni. Munawar. Rizki. Isolation of Antioxidant Compound from Endophytic Fungi Acremonium sp. from the Twigs of Kandis Gajah. MAKARA of Science Series. 2012; 16(1): 46-50. https://doi.org/10.7454/mss.v16i1.1280
32. Krishna K. Karuppuraj V. Perumal K. Antioxidant activity and Folic acid content in indigenous isolates of Ganoderma lucidum. Asian Journal of Pharmaceutical Analysis. 2016; 6(4): 213. https://doi.org/10.5958/2231-5675.2016.00032.6
33. Photolo MM. Mavumengwana V. Sitole L. Tlou MG. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. International Journal of Microbiology. 2020; (2): 1-11. https://doi.org/10.1155/2020/9483670.
34. Jahan IA. Hossain H. Ahmed K. Sultana Z. Biswas P. Nada K. Antioxidant activity of Moringa oleifera seed extracts. Oriental Pharmacy and Experimental Medicine. 2018; 18(1): 299-307. https://doi.org/10.1007/s13596-018-0333-y.
35. Babu D. Gurumurthy P. Borra SK. Cherian KM. Antioxidant and free radical scavenging activity of triphala determined by using different in vitro models. Journal of Medicinal Plants Research. 2013; 7(39): 2898–2905
36. Abriyani E. Fikayuniar L. Screening phytochemical, antioxidant activity and vitamin c assay from bungo perak-perak (Begonia versicolar irmsch) leaves. Asian Journal of Pharmaceutical Research. 2020; 10(3): 183. https://doi.org/10.5958/2231-5691.2020.00032.5
37. Holtz, RW. In vitro methods to screen materials for anti-aging effects. Skin Aging Handbook. 2009; 329-362. Elsevier Publishing. https://doi.org/10.1016/B978-0-8155-1584-5.50017-X.
38. Vaisali C. Belur PD. Regupathi I. Comparison of antioxidant properties of phenolic compounds and their effectiveness in imparting oxidative stability to sardine oil during storage. LWT - Food Science and Technology. 2016; 69(4): 153-160. https://doi.org/10.1016/j.lwt.2016.01.041
39. Foti MC. Antioxidant properties of phenols. The Journal of pharmacy and pharmacology. 2008; 59(12: 1673-1685. https://doi.org/10.1211/jpp.59.12.0010.
40. Khatua S. Paul S. Acharya K. Mushroom as the potential source of new generation of antioxidant: a review. Research Journal of Pharmacy and Technology. 2013; 6(5): 496-505.
41. Veliká B. Kron I. Antioxidant properties of phenols against superoxide radicals. Monatshefte fuer Chemie/Chemical Monthly. 2013; 144(9):1287-1290. https://doi.org/10.1007/s00706-013-1008-5
42. Mastura M. Barus T. Marpaung L. Simanjuntak P. Isolation and Antioxidant Activity of Phenolic Compounds from Halban Leaves (Vitex pinnata Linn) in Aceh. Elkawnie. 2020; 6(2): 213-221. https://doi.org/10.22373/ekw.v6i2.
43. Saravanan N. Rajasankar S. Nalini N. Antioxidant effect of 2-hydroxy-4-methoxy benzoic acid on ethanol-induced hepatotoxicity in rats. Journal of Pharmacy and Pharmacology. 2007; 59(3): 445-53. https://doi.org/10.1211/jpp.59.3.0015
44. Farhoosh R. Johnny S. Asnaashari M. Molaahmadibahraseman N. Sharif A. Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chemistry. 2016; 194: 128-134. https://doi.org/10.1016/j.foodchem.2015.08.003
45. Kalinowska M. Gołębiewska E. Swiderski G. Meczynska S. Lewandowska H.Pietryczuk A. Cudowski A.et al. Plant-Derived and Dietary Hydroxybenzoic Acids—A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients. 2021;13(9): 3107. https://doi.org/10.3390/nu13093107.
46. Ashfaq M H. Siddique A. Shahid S. Antioxidant activity of Cinnamon zeylanicum:(A review). Asian Journal of Pharmaceutical Research. 2021; 11(2): 106-116. https://doi.org/10.52711/2231-5691.2021.00021.