Author(s): Shivendra Singh Dewhare

Email(s): shivendraprsu@gmail.com

DOI: 10.52711/0974-360X.2024.00538   

Address: Shivendra Singh Dewhare*
School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur- 492010, Chhattisgarh, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 7,     Year - 2024


ABSTRACT:
Medicinal plants remain an indispensable source of drugs and important constituent for the treatment and control of various diseases worldwide. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) had infected one quarter of the world population, being revealed by recent estimate (WHO). For the treatment of tuberculosis, use of medicinal plants had been extensively documented in ancient scriptures in India and other civilizations of the world. Being one of the oldest, difficult to eradicate and with the recent emergence of drug resistant tuberculosis to current drugs had necessitated the scientific community to identify novel plants and screen their extracts and constituents for the treatment of tuberculosis. Lack of introduction of new drugs in recent past has also highlighted the need to identify novel drug compounds for the treatment of TB. In the present review article, traditional medicinal plants which are known to exhibit anti-TB activities are highlighted and their role in the treatment of tuberculosis, based on the scientific literature and database available. This will help in holistic understanding of the disease and potential novel treatment regime of the tuberculosis.


Cite this article:
Shivendra Singh Dewhare. Indian Medicinal Plants: A Source of Anti-tuberculosis Drug. Research Journal of Pharmacy and Technology. 2024; 17(7):3437-4. doi: 10.52711/0974-360X.2024.00538

Cite(Electronic):
Shivendra Singh Dewhare. Indian Medicinal Plants: A Source of Anti-tuberculosis Drug. Research Journal of Pharmacy and Technology. 2024; 17(7):3437-4. doi: 10.52711/0974-360X.2024.00538   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-71


REFERENCES:
1.    World Health Organization (WHO). WHO Traditional Medicine Strategy 2014-2023. World Heal Organ. Published Online 2013: 1-76. doi:2013
2.    Barberis I, Bragazzi NL, Galluzzo L, Martini M. The history of tuberculosis: From the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg. Published Online 2017. doi:10.15167/2421-4248/jpmh2017.58.1.728
3.    World Health Organization (2022) Global Tuberculosis Report. Published in 27th October 2022 by WHO. Geneva, Switzerland: WHO.
4.    Kumar L, Ranjan, Sharma, V. Tuberculosis: A Brief Overview. Asian J. Pharm. Res. 2016; Apr 2(2): 59-62
5.    Driscoll MD, McLean KJ, Levy C, Mast N, Pikuleva IA, Lafite P, Rigby SE, Leys D, Munro AW. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142: evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem. 2010; 285(49): 38270-38282. doi: 10.1074/jbc.M110.164293.
6.    Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Zeller K, Andrews J, Friedland G. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006; 368(9547): 1575-1580. doi: 10.1016/S0140-6736(06)69573-1.
7.    Velayati AA, Farnia P, Masjedi MR. The totally drug resistant tuberculosis (TDR-TB). Int J Clin Exp Med. 2013; 6(4): 307-309.
8.    Zine S, Patankar SA, Raopati SS: Rise of Antibiotic Resistance in Tuberculosis. Research J. Pharm. and Tech. 2018; 11(7): 3201-3204. doi: 10.5958/0974-360X.2018.00588.7
9.    Martolia J, Soni H, Tandel F: Natural perspective for Management of drug resistant Tuberculosis: A Review. Research J. Pharm. and Tech. 2020; 13(8): 4002-4008. doi: 10.5958/0974-360X.2020.00708.8
10.    Nimekar T, Wanjari B, Nema M, Bhiskute SM. Traditional Knowledge on Antimicrobial activity of Some Ethnomedicinal Plants used by Tribes of Gondia District in Maharashtra State. Research J. Pharmacognosy and Phytochemistry. 2012; 4(3): 147-151
11.    Mishra SK. Less Known Uses of Ethnomedicinal Plants among Tribes of Vindhyan Region of Madhya Pradesh. Research J. Science and Tech. 2015; 7(2): Apr. 121-124. doi: 10.5958/2349-2988.2015.00016.9
12.    Beck NR, Namdeo KP. A Study of the Ethno-medicinal Plants of a Remote Tribal Area of Jashpur District of Chhattisgarh. Research J. Pharm. and Tech. 2012; 5(12): Dec. 1549-1551.
13.    Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, Vargas-Villarreal J, González-Salazar F, Méndez-González M, Cáceres-Farfán M, Molina-Salinas GM. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther. 2014; 27(1): 114-120. doi: 10.1016/j.pupt.2013.08.001
14.    Chen S, Pang X, Song J, Shi L, Yao H, Han J, Leon C. A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol Adv. 2014; 32(7): 1237-1244. doi: 10.1016/j.biotechadv.2014.07.004.
15.    Sarangi A, Das BS, Patnaik G, Sarkar S, Debnath M, Mohan M, Bhattacharya D. Potent anti-mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management. J Appl Microbiol. 2021; 131(4): 1578-1599. doi: 10.1111/jam.15088.
16.    Ramachnadran S, Aanandhi VM, Cheriyan BV. Assessment of Antitubercular Activity- A Review. Research J. Pharm. and Tech 2019; 12(8): 3973-3978. doi: 10.5958/0974-360X.2019.00684.X
17.    Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2): 71-79. doi:10.1016/j.jpha.2015.11.005
18.    Pauli GF, Case RJ, Inui T, Wang Y, Cho S, Fischer NH, Franzblau SG. New perspectives on natural products in TB drug research. Life Sci. 2005; 78(5): 485-94. doi: 10.1016/j.lfs.2005.09.004
19.    Connell N.D., Nikaido H., in: B.R. Bloom (Ed.), Tuberculosis: Pathogenesis, Protection and Control, ASM Press, Washington, D.C., 1994,  333–352.
20.    Dumonceau JM, Van Gossum A, Adler M, Van Vooren JP, Fonteyne PA, De Beenhouwer H, Portaels F. Detection of fastidious mycobacteria in human intestines by the polymerase chain reaction. Eur J Clin Microbiol Infect Dis. 1997; 16(5): 358-63. doi: 10.1007/BF01726363.
21.    Yajko DM, Madej JJ, Lancaster MV, Sanders CA, Cawthon VL, Gee B, Babst A, Hadley WK. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J Clin Microbiol. 1995; 33(9): 2324-7. doi: 10.1128/jcm.33.9.2324-2327.1995.
22.    Collins LA, Franzblau SG. Microplate Alamar blue assay versus BACTEC 460 system for high- throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. Published Online 1997. doi:10.1128/aac.41.5.1004
23.    Shawar RM, Humble DJ, Van Dalfsen JM, Stover CK, Hickey MJ, Steele S, Mitscher LA, Baker W. Rapid screening of natural products for antimycobacterial activity by using luciferase-expressing strains of Mycobacterium bovis BCG and Mycobacterium intracellulare. Antimicrob Agents Chemother. 1997; 41(3): 570-4. doi: 10.1128/AAC.41.3.570.
24.    Martin A, Camacho M, Portaels F, Palomino JC. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob Agents Chemother. 2003; 47(11): 3616-3619. doi: 10.1128/AAC.47.11.3616-3619.2003
25.    Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002; 46(8): 2720-2722. doi: 10.1128/AAC.46.8.2720-2722.2002
26.    Cantrell CL, Nuñez IS, Castañeda-Acosta J, Foroozesh M, Fronczek FR, Fischer NH, Franzblau SG. Antimycobacterial activities of dehydrocostus lactone and its oxidation products. J Nat Prod. 1998; 61(10): 1181-1186. doi: 10.1021/np970333i.
27.    Díaz-Infantes MS, Ruiz-Serrano MJ, Martínez-Sánchez L, Ortega A, Bouza E. Evaluation of the MB/BacT mycobacterium detection system for susceptibility  testing of Mycobacterium tuberculosis. J Clin Microbiol. 2000; 38(5): 1988-1989. doi:10.1128/JCM.38.5.1988-1989.2000
28.    Sanders CA, Nieda RR, Desmond EP. Validation of the use of Middlebrook 7H10 agar, BACTEC MGIT 960, and BACTEC 460  12B media for testing the susceptibility of Mycobacterium tuberculosis to levofloxacin. J Clin Microbiol. 2004; 42(11): 5225-5228. doi:10.1128/JCM.42.11.5225-5228.2004
29.    Ruiz P, Zerolo FJ, Casal MJ. Comparison of susceptibility testing of Mycobacterium tuberculosis using the ESP culture system II with that using the BACTEC method. J Clin Microbiol. 2000; 38(12): 4663-4664. doi:10.1128/JCM.38.12.4663-4664.2000
30.    Palomino JC, Traore H, Fissette K, Portaels F. Evaluation of Mycobacteria Growth Indicator Tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc lung Dis Off J Int Union against Tuberc Lung Dis. 1999; 3(4): 344-348.
31.    Collins LA, Torrero MN, Franzblau SG. Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1998; 42(2): 344-347. doi:10.1128/AAC.42.2.344
32.    MacGilvary N,J and Tan, S., Fluorescent Mycobacterium tuberculosis reporters: illuminating host–pathogen interactions. Pathogens and Disease. 2018; 76(3): fty017. doi: 10.1093/femspd/fty017.
33.    Cooksey RC, Crawford JT, Jacobs WRJ, Shinnick TM. A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother. 1993; 37(6): 1348-1352. doi:10.1128/AAC.37.6.1348
34.    Arain TM, Resconi AE, Hickey MJ, Stover CK. Bioluminescence screening in vitro (Bio-Siv) assays for high-volume antimycobacterial drug discovery. Antimicrob Agents Chemother. 1996; 40(6): 1536-1541. doi:10.1128/aac.40.6.1536
35.    Kubica G, Kent K. Public health mycobacteriology: a guide for the level III laboratory. Atlanta Dep Heal Human\rServices, Public Heal Serv Centers Dis Control. Published online 1985: 60-63.
36.    Angeby KAK, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol. 2002; 40(2): 553-555. doi:10.1128/JCM.40.2.553-555.2002
37.    Baldwin, S.L., D’Souza, C., Butler, W.R.R., Guthertz L.S. Mycolic acid analysis by high performance liquid chromatography for identification of Mycobacterium species Clin. Microbiol. Rev 2001, 14 (4): 704–726. doi: 10.1128/CMR.14.4.704-726.2001.
38.    Viader-Salvadó JM, Garza-González E, Valdez-Leal R, del Bosque-Moncayo MA, Tijerina-Menchaca R, Guerrero-Olazarán M. Mycolic acid index susceptibility method for Mycobacterium tuberculosis. J Clin Microbiol. 2001; 39(7): 2642-2645. doi:10.1128/JCM.39.7.2642-2645.2001
39.    Norden MA, Kurzynski TA, Bownds SE, Callister SM, Schell RF. Rapid susceptibility testing of Mycobacterium tuberculosis (H37Ra) by flow cytometry. J Clin Microbiol. 1995; 33(5): 1231-7. doi: 10.1128/jcm.33.5.1231-1237.1995.
40.    Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG. Safe susceptibility testing of Mycobacterium tuberculosis by flow cytometry with  the fluorescent nucleic acid stain SYTO 16. J Med Microbiol. 2005; 54(Pt 1): 77-81. doi:10.1099/jmm.0.45627-0
41.    Khan A, Sarkar D. A simple whole cell based high throughput screening protocol using Mycobacterium  bovis BCG for inhibitors against dormant and active tubercle bacilli. J Microbiol Methods. 2008; 73(1): 62-68. doi:10.1016/j.mimet.2008.01.015
42.    Lukey, P., Hooker, E. Macrophage virulence assays, in: N. Stoker, T. Parish (Eds.), M. tuberculosis Protocols, Humana Press, New Jersey, USA, 2001; 271–280.
43.    Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE 3rd. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science. 2008; Nov 28; 322(5906): 1392-5. doi: 10.1126/science.1164571.
44.    Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med. 2003; 198(5): 705-13. doi: 10.1084/jem.20030205.
45.    Kelly BP, Furney SK, Jessen MT, Orme IM. Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1996; 40(12): 2809-2812. doi:10.1128/AAC.40.12.2809
46.    Sharma, S.K. 1998; Medicinal plants used in Ayurveda. National Academy of Ayurveda, Ministry of Health and Family Welfare, Govt. of India, New Delhi, India
47.    Beck NR, Samal P. Traditional Medicinal Plants used by the Tribes and Rural People of Bilaspur District, Chhattisgarh (India). Research J. Pharm. and Tech. 2012; 5(10): October: 1281-1282
48.    Chopra IC, Khajuria BN, Chopra CL. Antibacterial properties of volatile principles from Alpinia galanga and Acorus  calamus. Antibiot Chemother (Northfield, Ill). 1957; 7(7): 378-383.
49.    Grange JM, Snell NJ. Activity of bromhexine and ambroxol, semi-synthetic derivatives of vasicine from  the Indian shrub Adhatoda vasica, against Mycobacterium tuberculosis in vitro. J Ethnopharmacol. 1996; 50(1): 49-53. doi:10.1016/0378-8741(95)01331-8
50.    Ignacimuthu S, Shanmugam N. Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica Ness. leaves. J Biosci. 2010; 35(4): 565-570. doi:10.1007/s12038-010-0065-8
51.    Newton SM, Lau C, Gurcha SS, Besra GS, Wright CW. The evaluation of forty-three plant species for in vitro antimycobacterial  activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J Ethnopharmacol. 2002; 79(1): 57-67. doi:10.1016/s0378-8741(01)00350-6
52.    Fitzpatrick FK. Plant substances active against Mycobacterium tuberculosis. Antibiot Chemother (Northfield, Ill). 1954; 4(5): 528-536.
53.    Nair SS, Gaikwad SS, Kulkarni SP, Mukne AP. Allium sativum Constituents Exhibit Anti-tubercular Activity In vitro and in RAW  264.7 Mouse Macrophage Cells Infected with Mycobacterium tuberculosis H37Rv. Pharmacogn Mag. 2017; 13(Suppl 2): S209-S215. doi:10.4103/pm.pm_435_16
54.    Muniyan R, Gurunathan J. Lauric acid and myristic acid from Allium sativum inhibit the growth of  Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B. Pharm Biol. 2016; 54(12): 2814-2821. doi:10.1080/13880209.2016.1184691
55.    Warit S, Rukseree K, Prammananan T, Hongmanee P, Billamas P, Jaitrong S, Chaiprasert A, Jaki BU, Pauli GF, Franzblau SG, Palittapongarnpim P. In Vitro Activities of Enantiopure and Racemic 1'-Acetoxychavicol Acetate against Clinical Isolates of Mycobacterium tuberculosis. Sci Pharm. 2017; 85(3): 32. doi: 10.3390/scipharm85030032.
56.    Puntumchai A, Kittakoop P, Rajviroongit S, Vimuttipong S, Likhitwitayawuid K, Thebtaranonth Y. Lakoochins A and B, New Antimycobacterial Stilbene Derivatives from Artocarpus lakoocha. J Nat Prod. 2004; 67(3): 485-486. doi:10.1021/np030429e
57.    Promsawan N, Kittakoop P, Boonphong S, Nongkunsarn P. Antitubercular cassane furanoditerpenoids from the roots of Caesalpinia  pulcherrima. Planta Med. 2003; 69(8): 776-777. doi:10.1055/s-2003-42782
58.    Grange JM, Davey RW. Detection of antituberculous activity in plant extracts. J Appl Bacteriol. 1990; 68(6): 587-591. doi:10.1111/j.1365-2672.1990.tb05224.x
59.    Tamrakar VK, Bhat J. In vitro evaluation of anti-mycobacterial active plant extracts against Mycobacterium tuberculosis using mycobacterium growth indicator tubes (MGIT-960) BACTEC system. Published online 2022: 4-9. https://doi.org/10.21203/rs.3.rs-1609878/v1
60.    Ghosal S, Chaudhuri RK. Chemical constituents of Gentianaceae XVI: antitubercular activity of xanthones of Canscora decussata Schult. J Pharm Sci. 1975; 64(5): 888-889. doi:10.1002/jps.2600640543
61.    Ghosal S, Sharma P V, Jaiswal DK. Chemical Constituents of Gentianaceae XXIII: Tetraoxygenated and Pentaoxygenated Xanthones and Xanthone O-Glucosides of Swertia angustifolia Buch.-Ham. J Pharm Sci. 1978; 67(1): 55-60. doi:https://doi.org/10.1002/jps.2600670115
62.    Suresh M, Rath PK, Panneerselvam A, Dhanasekaran D, Thajuddin. Anti-Mycobacterial Effect of Leaf Extract of Centella asiatica (Mackinlayaceae). Research J. Pharm. and Tech. 2010; 3 (3): July-Sept. 872-876
63.    Famewo EB, Clarke AM, Wiid I, Ngwane A, van Helden P, Afolayan AJ. Anti-mycobacterium tuberculosis activity of polyherbal medicines used for the  treatment of tuberculosis in Eastern Cape, South Africa. Afr Health Sci. 2017; 17(3): 780-789. doi:10.4314/ahs.v17i3.21
64.    Antoun MD, Ramos Z, Vazques J, Oquendo I, Proctor GR, Gerena L, Franzblau SG. Evaluation of the flora of Puerto Rico for in vitro antiplasmodial and antimycobacterial activities. Phytother Res. 2001; 15(7): 638-42. doi: 10.1002/ptr.880.
65.    Njeru SN, Obonyo MA, Nyambati SO, Ngari SM. Bioactivity of Cissampelos pareira medicinal plant against Mycobacterium tuberculosis. ~ 167 ~ J Pharmacogn Phytochem. 2015; 3(6): 167-173.
66.    Obakiro SB, Kiprop A, Kowino I, Kigondu E, Odero MP, Omara T, Bunalema L. Ethnobotany, ethnopharmacology, and phytochemistry of traditional medicinal plants used in the management of symptoms of tuberculosis in East Africa: a systematic review. Trop Med Health. 2020; 48: 68. doi: 10.1186/s41182-020-00256-1.
67.    Mehta A, Srivastva G, Kachhwaha S, Sharma M, Kothari SL. Antimycobacterial activity of Citrullus colocynthis (L.) Schrad. against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates. J Ethnopharmacol. Published online 2013. doi:10.1016/j.jep.2013.06.022
68.    Waffo AK, Azebaze GA, Nkengfack AE, Fomum ZT, Meyer M, Bodo B, van Heerden FR. Indicanines B and C, two isoflavonoid derivatives from the root bark of Erythrina indica. Phytochemistry. 2000; 53(8): 981-5. doi: 10.1016/s0031-9422(99)00615-9.
69.    Mitscher LA, Baker W. Tuberculosis: a search for novel therapy starting with natural products. Med Res Rev. 1998; 18(6): 363-374. doi:10.1002/(sici)1098-1128(199811)18:6<363:aid-med1>3.0.co;2-i
70.    Topçu G, Erenler R, Cakmak O, Johansson CB, Celik C, Chai HB, Pezzuto JM. Diterpenes from the berries of Juniperus excelsa. Phytochemistry. 1999; 50(7): 1195-9. doi: 10.1016/s0031-9422(98)00675-x.
71.    Muhammad I, Mossa JS, El-Feraly FS. Antibacterial diterpenes from the leaves and seeds of Juniperus excelsa M. Bieb. Phyther Res. 1992; 6. doi:10.1002/ptr.2650060508
72.    Saludes JP, Garson MJ, Franzblau SG, Aguinaldo AM. Antitubercular constituents from the hexane fraction of Morinda citrifolia Linn. (Rubiaceae). Phytother Res. 2002; 16(7): 683-685. doi:10.1002/ptr.1003
73.    Reddi G, Shukla NP, Singh K V. Chemotherapy of tuberculosis--antitubercular activity of Ocimum sanctum leafy extract. Fitoterapia. 1986;v. 57.
74.    Rukachaisirikul T, Siriwattanakit P, Sukcharoenphol K, Wongvein C, Ruttanaweang P, Wongwattanavuch P, Suksamrarn A. Chemical constituents and bioactivity of Piper sarmentosum. J Ethnopharmacol. 2004; 93(2-3): 173-6. doi: 10.1016/j.jep.2004.01.022.
75.    McCutcheon AR, Ellis SM, Hancock RE, Towers GH. Antibiotic screening of medicinal plants of the British Columbian native peoples. J Ethnopharmacol. 1992; 37(3): 213-223. doi:10.1016/0378-8741(92)90036-q
76.    Muniyan, R., Sundararajan, S., Jochebed,J, S. Antimicrobial and Antimycobacterial properties of Solanum trilobatum L. - In-vitro. Research Journal of Pharmacy and Technology. 2022; 15(12): 5603.9. doi:10.52711/0974-360X.2022.00946
77.    Gupta KC, Viswanathan R. Antitubercular substances from plants; a preliminary study. Antibiot Chemother (Northfield, Ill). 1956; 6(3): 194-195.
78.    Hiserodt RD, Franzblau SG, Rosen RT. Isolation of 6-, 8-, and 10-Gingerol from Ginger Rhizome by HPLC and Preliminary Evaluation of Inhibition of Mycobacterium aviumand Mycobacterium tuberculosis. J Agric Food Chem. Published online 1998. doi:10.1021/jf970948l
79.    Ladda PL, Naikwade NS, Magdum CS. Magdum. Antimycobacterial and Antimicrobial Activity of Leaf Extracts of Vitex negundo Linn. Research J. Pharmacognosy and Phytochemistry 2010; 2(2): 166-168
80.    Ladda PL, Magdum, C. S. Antitubercular Activity and Isolation of Chemical Constituents from plant Vitex negundo Linn. Iranian Journal of Pharmaceutical Research, 2018; 17(4): 1353–1360.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available