Author(s): Avril Mathias, R Narayana Charyulu

Email(s): avrilmathias11@gmail.com

DOI: 10.52711/0974-360X.2024.00542   

Address: Avril Mathias*, R Narayana Charyulu
Department of Pharmaceutics, Nitte College of Pharmaceutical Sciences. Yelahanka, Bengaluru – 560064. Department of Pharmaceutics, N.G.S.M. Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Mangalore 575018.
*Corresponding Author

Published In:   Volume - 17,      Issue - 7,     Year - 2024


ABSTRACT:
Rheumatoid arthritis (RA) is a chronic inflammatory illness that attacks the body's joints. This condition causes the sufferer discomfort, suffering, and eventually loss of function. Because there is no permanent treatment for the condition, researchers have made ongoing attempts to enhance quality of life and manage symptoms. With medical advancements, early discovery of RA can lead to the creation of a patient-specific cure. To comprehend the pathophysiology of the disease, one must first comprehend the physiology of the organ involved. This is detailed review that summarizes the study of the synovial fluid, the joints, pathogenesis of RA along with the older like the use of NSAIDs and the newer systems of treatment modalities of RA like the use of Disease Modifying Anti-Rheumatoid Drugs (DMARDs) like Methotrexate, Biological Agents like Tumour Necrosis Factor and Janus Kinase Inhibitors. There are many complications associated with the use of certain drugs like NSAIDs can lead to permanent gastrointestinal disorders which will cause discomfort to the patient. Therefore newer systems of medicines like DMARDs have been used. When drugs are taken orally, then can cause GI disturbances. Intra-articular administration of such drugs can be used as a boon to treat rheumatoid arthritis.


Cite this article:
Avril Mathias, R Narayana Charyulu. Intra-Articular Drug Delivery System in the treatment of Rheumatoid Arthritis - A Review on approaches for Drug delivery. Research Journal of Pharmacy and Technology. 2024; 17(7):3467-2. doi: 10.52711/0974-360X.2024.00542

Cite(Electronic):
Avril Mathias, R Narayana Charyulu. Intra-Articular Drug Delivery System in the treatment of Rheumatoid Arthritis - A Review on approaches for Drug delivery. Research Journal of Pharmacy and Technology. 2024; 17(7):3467-2. doi: 10.52711/0974-360X.2024.00542   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-7-75


REFERENCES:
1.    Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018; 392(10146): 508-520. doi:10.1016/S0140-6736(18)31129-2
2.    Maenner MJ, Shaw KA, Bakian A V., et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveillence Summit. 2021; 70(11): 1-16. doi:10.15585/MMWR.SS7011A1
3.    Yoon N, Huh Y, Lee H, et al. Alterations in Social Brain Network Topology at Rest in Children With Autism Spectrum Disorder. Psychiatry Investigation. 2022; 19(12): 1055-1068. doi:10.30773/PI.2022.0174
4.    Thabtah F, Peebles D. Early Autism Screening: A Comprehensive Review. International Journal of Environmental Research and Public Health. 2019; 16(18). doi:10.3390/IJERPH16183502
5.    Bougeard C, Picarel-Blanchot F, Schmid R, Campbell R, Buitelaar J. Prevalence of Autism Spectrum Disorder and Co-morbidities in Children and Adolescents: A Systematic Literature Review. Frontiers in Psychiatry. 2021; 12. doi:10.3389/FPSYT.2021.744709
6.    Sharma SR, Gonda X, Tarazi FI. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacology and Therapeutics. 2018; 190: 91-104. doi:10.1016/J.PHARMTHERA.2018.05.007
7.    Hirota T, King BH. Autism Spectrum Disorder: A Review. JAMA. 2023; 329(2): 157-168. doi:10.1001/JAMA.2022.23661.
8.    Nadar S, Thenmozhi MS. Speech impairment in Autistic Children. Research Journal of Pharmacy and Technology 2015; 8(8): 1017-1022. doi: 10.5958/0974-360X.2015.00173.0
9.    Lee JH, Jo HG, Min SY. East Asian Herbal Medicine Combined with Conventional Therapy for Children with Autism Spectrum Disorder: A Systematic Review and Meta-analysis. Explore. 2022; 18(6): 646-656. doi:10.1016/J.EXPLORE.2022.02.001
10.    Bang M, Lee SH, Cho SH, et al. Herbal Medicine Treatment for Children with Autism Spectrum Disorder: A Systematic Review. Evidence Based Complementary Alternative Medicine. 2017; 2017. doi:10.1155/2017/8614680
11.    Gasparotto FM, dos Reis Lívero FA, Tolouei Menegati SEL, Junior AG. Herbal Medicine as an Alternative Treatment in Autism Spectrum Disorder: A Systematic Review. Current Drug Metabolism 2017; 19(5): 454-459. doi:10.2174/1389200219666171227202332
12.    Shen MD, Piven J. Brain and behavior development in autism from birth through infancy. Dialogues in Clinical Neuroscience. 2017; 19(4): 325-333. doi: 10.31887/DCNS.2017.19.4/mshen
13.    Girault JB, Piven J. The Neurodevelopment of Autism from Infancy Through Toddlerhood. Neuroimaging Clinics of North America. 2020; 30(1): 97-114. doi: 10.1016/j.nic.2019.09.009.
14.    Yugander P, Jagannath M. Structural Neuroimaging Findings in Autism Spectrum Disorder: A Systematic Review. Research Journal of Pharmacy and Technology. 2021; 14(4): 2341-7. doi: 10.52711/0974-360X.2021.00413
15.    Yadav S. Autism Spectrum Disorder- A Review. Internation Journal of Nursing Education and Research. 2016; 4(2): 223-226. doi: 10.5958/2454-2660.2016.00044.2  
16.    Stahmer AC, Ingersoll B, Carter C. Behavioral approaches to promoting play. Autism. 2003; Dec; 7(4): 401-13. doi: 10.1177/1362361303007004006.
17.    Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neuroscience Biobehavior Review. 2021; 129: 35-62. doi:10.1016/J.NEUBIOREV.2021.07.014
18.    Maleki M, Noorimotlagh Z, Mirzaee SA, et al. An updated systematic review on the maternal exposure to environmental pesticides and involved mechanisms of autism spectrum disorder (ASD) progression risk in children. Reviews in Enviromental Health. Published online 2022. doi:10.1515/REVEH-2022-0092
19.    Masini E, Loi E, Vega-Benedetti AF, et al. An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity. International  Journal of Molecular Science. 2020; 21(21): 1-22. doi:10.3390/IJMS21218290
20.    Rahbar MH, Samms-Vaughan M, Saroukhani S, et al. Associations of Metabolic Genes ( GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. International Journal of Environmental Research and Public Health. 2021; 18(4): 1-20. doi:10.3390/IJERPH18041377
21.    Rahbar MH, Samms-Vaughan M, Kim S, et al. Detoxification Role of Metabolic Glutathione S-Transferase (GST) Genes in Blood Lead Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Genes (Basel). 2022; 13(6). doi:10.3390/GENES13060975
22.    Jaureguiberry MS, Venturino A. Nutritional and environmental contributions to autism spectrum disorders: Focus on nutrigenomics as complementary therapy. International Journal of Vitamin Nutrition Research. 2022; 92(3-4): 248-266. doi:10.1024/0300-9831/A000630
23.    Savino R, Medoro A, Ali S, Scapagnini G, Maes M, Davinelli S. The Emerging Role of Flavonoids in Autism Spectrum Disorder: A Systematic Review. Journal of Clinical Medicine. 2023; 12(10). doi:10.3390/JCM12103520
24.    Dhariyal RS, Kimothi V, Singh S. A Review on Autism. Research Journal of Pharmacology and Pharmacodynamics. 2019; 11(2): 76-80 . doi: 10.5958/2321-5836.2019.00013.2
25.    Mohammed MB, Alrubaye YSJ. The Oxidative status in Children with Autism receiving Melatonin. Research Journal of Pharmacy and Technology. 2022; 15(1): 338-2. doi: 10.52711/0974-360X.2022.00055
26.    Barbalho SM, Direito R, Laurindo LF, et al. Ginkgo biloba in the Aging Process: A Narrative Review. Antioxidants 2022; 11(3): 525. 525. doi:10.3390/ANTIOX11030525
27.    Batawi AH. Ginkgo biloba extract mitigates the neurotoxicity of AlCl3 in alzheimer rat’s model: role of apolipoprotein E4 and clusterin genes in stimulating ROS generation and apoptosis. International Journal of Neuroscience. Published online 2022. doi:10.1080/00207454.2022.2082968
28.    Shahrajabian MH, Sun W, Cheng Q. Ginkgo Biloba: A Famous Living Fossil Tree and an Ancient Herbal Traditional Chinese Medicine. Current Nutrition and Food Science. 2021; 18(3): 259-264. doi:10.2174/1573401317666210910120735
29.    Liu LW, Yue HY, Zou J, et al. Comprehensive metabolomics and lipidomics profiling uncovering neuroprotective effects of Ginkgo biloba L. leaf extract on Alzheimer’s disease. Frontiers in Pharmacology. 2022; 13. doi:10.3389/FPHAR.2022.1076960/FULL
30.    Noor-E-Tabassum, Das R, Lami MS, et al. Ginkgo biloba: A Treasure of Functional Phytochemicals with Multimedicinal Applications. Evidence-based Complementary and Alternative Medicine. 2022; 2022. doi:10.1155/2022/8288818
31.    García-Alberca JM, Mendoza S, Gris E. Benefits of Treatment with Ginkgo Biloba Extract EGb 761 Alone or Combined with Acetylcholinesterase Inhibitors in Vascular Dementia. Clinical Drug Investigation. 2022; 42(5): 391-402. doi:10.1007/S40261-022-01136-8/TABLES/5
32.    Hasanzadeh E, Mohammadi MR, Ghanizadeh A, et al. A double-blind placebo controlled trial of Ginkgo biloba added to risperidone in patients with autistic disorders. Child Psychiatry Human Development. 2012; 43(5): 674-682. doi:10.1007/S10578-012-0292-3
33.    Niederhofer H. First preliminary results of an observation of Ginkgo Biloba treating patients with autistic disorder. Phytotherapy Research. 2009; 23(11): 1645-1646. doi:10.1002/PTR.2778
34.    Rabiee A, Vasaghi-Gharamaleki B, Samadi SA, Amiri-Shavaki Y, Alaghband-Rad J. Working Memory Deficits and its Relationship to Autism Spectrum Disorders. Iran Journal of Medical Science. 2020; 45(2): 100. doi:10.30476/IJMS.2019.45315
35.    Kardani A, Soltani A, Sewell RDE, Shahrani M, Rafieian-Kopaei M. Neurotransmitter, Antioxidant and Anti-neuroinflammatory Mechanistic Potentials of Herbal Medicines in Ameliorating Autism Spectrum Disorder. Current Pharmaceutical Design. 2019; 25(41): 4421-4429. doi:10.2174/1381612825666191112143940
36.    Rasool M, Malik A, Qureshi MS, et al. Recent updates in the treatment of neurodegenerative disorders using natural compounds. Evidence Based Complementary Alternative Medicine. 2014; 2014. doi:10.1155/2014/979730
37.    Pham HTN, Tran HN, Nguyen PT, et al. Bacopa monnieri (L.) Wettst. Extract Improves Memory Performance via Promotion of Neurogenesis in the Hippocampal Dentate Gyrus of Adolescent Mice. International Journal of Molecular Science. 2020; 21(9): 3365. doi:10.3390/IJMS21093365
38.    Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Scientific Reports. 2021 111. 2021; 11(1): 1-11. doi:10.1038/s41598-020-80045-2
39.    Benson S, Downey LA, Stough C, Wetherell M, Zangara A, Scholey A. An Acute, Double-Blind, Placebo-Controlled Cross-over Study of 320 mg and 640 mg Doses of Bacopa monnieri (CDRI 08) on Multitasking Stress Reactivity and Mood. Phytherapy Research. 2014; 28(4): 551-559. doi:10.1002/PTR.5029
40.    Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. Journal of Ethnopharmacology. 2017; 197: 92-100. doi:10.1016/J.JEP.2016.07.073
41.    Goyal A, Gopika S, Kumar A, Garabadu D. A Comprehensive Review on Preclinical Evidence-based Neuroprotective Potential of Bacopa monnieri against Parkinson’s Disease. Current Drug Targets. 2022; 23(9): 889-901. doi:10.2174/1389450123666220316091734
42.    Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Archieves of Biochemistry and Biophysics. 2019; 676: 108153. doi:10.1016/J.ABB.2019.108153
43.    Basheer A, Agarwal A, Mishra B, et al. Use of Bacopa monnieri in the Treatment of Dementia Due to Alzheimer Disease: Systematic Review of Randomized Controlled Trials. Interaction Journal of Medical Research 2022; 11(2): e38542 https//www.i-jmr.org/2022/2/e38542. 2022; 11(2): e38542. doi:10.2196/38542
44.    Fatima U, Roy S, Ahmad S, et al. Investigating neuroprotective roles of Bacopa monnieri extracts: Mechanistic insights and therapeutic implications. Biomedicine and Pharmacotherapy. 2022; 153: 113469. doi:10.1016/J.BIOPHA.2022.113469
45.    Abhishek M, Rubal S, Rohit K, et al. Neuroprotective effect of the standardised extract of Bacopa monnieri (BacoMind) in valproic acid model of autism spectrum disorder in rats. Journal of Ethnopharmacology. 2022; 293: 115199. doi:10.1016/J.JEP.2022.115199
46.    Zhao T, Li C, Wang S, Song X. Green Tea ( Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules. 2022; 27(12). doi:10.3390/MOLECULES27123909
47.    Banji D, Banji OJF, Abbagoni S, Hayath MS, Kambam S, Chiluka VL. Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Research. 2011; 1410: 141-151. doi:10.1016/J.BRAINRES.2011.06.063
48.    Raj K, Gupta GD, Singh S. l-Theanine ameliorates motor deficit, mitochondrial dysfunction, and neurodegeneration against chronic tramadol induced rats model of Parkinson’s disease. Drug and Chemical Toxicology. 2022; 45(5): 2097-2108. doi:10.1080/01480545.2021.1907909
49.    Kodidela S, Shaik FB, Mittameedi CM, Mugudeeswaran S. Influence of green tea on alcohol aggravated neurodegeneration of cortex, cerebellum and hippocampus of STZ-induced diabetic rats. Heliyon. 2023; 9(7): e17385. doi:10.1016/J.HELIYON.2023.E17385
50.    Xu T, Wang C, Jiang S, Yang T, Wu X. Glycosylation of luteolin in hydrophilic organic solvents and structure-antioxidant relationships of luteolin glycosides. RSC Advances. 2022; 12(28): 18232-18237. doi:10.1039/D2RA03300C
51.    Xie YZ, Peng CW, Su ZQ, et al. A Practical Strategy for Exploring the Pharmacological Mechanism of Luteolin Against COVID-19/Asthma Comorbidity: Findings of System Pharmacology and Bioinformatics Analysis. Frontiers in Immunology. 2022; 12. doi:10.3389/FIMMU.2021.769011
52.    Kempuraj D, Thangavel R, Kempuraj DD, et al. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors. 2021; 47(2): 190-197. doi:10.1002/BIOF.1687
53.    Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nature Reviews in Neurology. 2021; 17(9): 564-579. doi:10.1038/S41582-021-00530-8
54.    Zhou W, Hu M, Hu J, Du Z, Su Q, Xiang Z. Luteolin Suppresses Microglia Neuroinflammatory Responses and Relieves Inflammation-Induced Cognitive Impairments. Neurotoxin Research. 2021; 39(6): 1800-1811. doi:10.1007/S12640-021-00426-X
55.    Achour M, Ferdousi F, Sasaki K, Isoda H. Luteolin Modulates Neural Stem Cells Fate Determination: In vitro Study on Human Neural Stem Cells, and in vivo Study on LPS-Induced Depression Mice Model. Frontiers in Cell Development Biology. 2021; 9. doi:10.3389/FCELL.2021.753279
56.    Taliou A, Zintzaras E, Lykouras L, Francis K. An open-label pilot study of a formulation containing the anti-inflammatory flavonoid luteolin and its effects on behavior in children with autism spectrum disorders. Clinical Therapy. 2013; 35(5): 592-602. doi:10.1016/J.CLINTHERA.2013.04.006
57.    Tsilioni I, Taliou A, Francis K, Theoharides TC. Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Translational Psychiatry. 2015; 5(9): e647-e647. doi:10.1038/tp.2015.142
58.    Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: A review of its biological effects. Phytotherapy Research. 2021; 35(2): 680-700. doi:10.1002/PTR.6855
59.    Mao K, Lei D, Zhang H, You C. Anticonvulsant effect of piperine ameliorates memory impairment, inflammation and oxidative stress in a rat model of pilocarpine-induced epilepsy. Experimental Therapy and Medicine. 2017; 13(2): 695-700. doi:10.3892/ETM.2016.4001
60.    Roshanbakhsh H, Elahdadi Salmani M, Dehghan S, Nazari A, Javan M, Pourabdolhossein F. Piperine ameliorated memory impairment and myelin damage in lysolecethin induced hippocampal demyelination. Life Science. 2020; 253. doi:10.1016/J.LFS.2020.117671
61.    Pragnya B, Kameshwari JSL, Veeresh B. Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/C mice. Behavioral Brain Research. 2014; 270: 86-94. doi:10.1016/J.BBR.2014.04.045
62.    Wattanathorn J, Chonpathompikunlert P, Muchimapura S, Priprem A, Tankamnerdthai O. Piperine, the potential functional food for mood and cognitive disorders. Food and Chemical Toxicology. 2008; 46(9): 3106-3110. doi:10.1016/J.FCT.2008.06.014
63.    Fan F, Lei M. Mechanisms Underlying Curcumin-Induced Neuroprotection in Cerebral Ischemia. Frontiers in Pharmacology. 2022; 13. doi:10.3389/FPHAR.2022.893118
64.    Peng Y, Ao M, Dong B, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Design and Development Therapy. 2021; 15: 4503-4525. doi:10.2147/DDDT.S327378
65.    Zhong H, Xiao R, Ruan R, et al. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology (Berl). 2020; 237(12): 3539-3552. doi:10.1007/S00213-020-05634-5
66.    Bhandari R, Kuhad A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Science. 2015; 141: 156-169. doi:10.1016/J.LFS.2015.09.012
67.    Zheng Y, Zhang J, Zhao Y, et al. Curcumin protects against cognitive impairments in a rat model of chronic cerebral hypoperfusion combined with diabetes mellitus by suppressing neuroinflammation, apoptosis, and pyroptosis. International Immunopharmacology. 2021; 93. doi:10.1016/J.INTIMP.2021.107422
68.    Lacroix C, Alleman-Brimault I, Zalta A, et al. What Do We Know About Medical Cannabis in Neurological Disorders and What Are the Next Steps? Frontiers in Pharmacology. 2022; 13. doi:10.3389/FPHAR.2022.883987
69.    Pedrazzi JFC, Ferreira FR, Silva-Amaral D, et al. Cannabidiol for the treatment of autism spectrum disorder: hope or hype? Psychopharmacology (Berl). 2022; 239(9): 2713-2734. doi:10.1007/S00213-022-06196-4
70.    da Silva Junior EA, Medeiros WMB, Torro N, et al. Cannabis and cannabinoid use in autism spectrum disorder: a systematic review. Trends in Psychiatry and Psychotherapy. 2022; 44. doi:10.47626/2237-6089-2020-0149
71.    Aran A, Harel M, Cassuto H, et al. Cannabinoid treatment for autism: a proof-of-concept randomized trial. Molecular Autism. 2021; 12(1). doi:10.1186/S13229-021-00420-2
72.    Zamberletti E, Rubino T, Parolaro D. Therapeutic potential of cannabidivarin for epilepsy and autism spectrum disorder. Pharmacology and Therapeutics. 2021; 226. doi:10.1016/J.PHARMTHERA.2021.107878
73.    Pretzsch CM, Floris DL, Voinescu B, et al. Modulation of striatal functional connectivity differences in adults with and without autism spectrum disorder in a single-dose randomized trial of cannabidivarin. Molecular Autism. 2021; 12(1). doi:10.1186/S13229-021-00454-6
74.    Zamberletti E, Gabaglio M, Woolley-Roberts M, Bingham S, Rubino T, Parolaro D. Cannabidivarin Treatment Ameliorates Autism-Like Behaviors and Restores Hippocampal Endocannabinoid System and Glia Alterations Induced by Prenatal Valproic Acid Exposure in Rats. Frontiers in Cell Neuroscience. 2019; 13. doi:10.3389/FNCEL.2019.00367
75.    Lee SH, Shin S, Kim TH, et al. Safety, effectiveness, and economic evaluation of an herbal medicine, Ukgansangajinpibanha granule, in children with autism spectrum disorder: a study protocol for a prospective, multicenter, randomized, double-blinded, placebo-controlled, parallel-group clinical trial. Trials. 2019; 20(1). doi:10.1186/S13063-019-3537-7
76.    Liu M, Fan G, Zhang D, Zhu M, Zhang H. Study on Mechanism of Jiawei Chaiqin Wendan Decoction in Treatment of Vestibular Migraine Based on Network Pharmacology and Molecular Docking Technology. Evidence Based Complementary and Alternative Medicine. 2021; 2021. doi:10.1155/2021/5528403
77.    Xiao-yu J, Zai-xin C, Zuo-mei Z, et al. Combined treatment of children with autism with modified Yinhuo Decoction and therapeutic interventions. China Journal of Traditional Chinese Medicine and Pharmacy. 2016; (10): 4322-4324.
78.    Nianyin Z. Clinical Observation of Supplemented Lizhong Decoction in Treating Children Autism. Journal New Chinese Medicine. Published online 2015.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available