Author(s):
Asriullah Jabbar, Muhammad Ilyas Y, Hasyrul Hamzah, Anita Restu Puji Raharjeng, Rafika Sari, Titik Tri Handayani, Sylvia Utami Tunjung Pratiwi
Email(s):
asriullahjabbar@uho.ac.id
DOI:
10.52711/0974-360X.2024.00564
Address:
Asriullah Jabbar1,2,11*, Muhammad Ilyas Y2,3, Hasyrul Hamzah4,11, Anita Restu Puji Raharjeng5,6, Rafika Sari7,8, Titik Tri Handayani9, Sylvia Utami Tunjung Pratiwi9,10,11*
1Post Doctoral Program, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Farmako Sekip Utara, Yogyakarta, Indonesia, 55281.
2Faculty of Pharmacy, Universitas Halu Oleo, Jl. H.E.A Mokodompit, Kendari, Indonesia, 93232
3Politeknik Bina Husada Kendari, 93117, Indonesia.
4Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia.
5Doctoral Program, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknikaselatan, Mlati, Sleman, Yogyakarta, Indonesia, 55281.
6Biologi Study Program, Faculty of Saintek, Universitas Islam Negeri Raden Fatah Palembang, Jl. Pangeran ratu, 5 Ulu, Palembang, Sumatera Selatan, Indonesia, 30267.
7Doctoral Program, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Farmako Sekip Utara, Yogyakarta, Indonesia, 55281.
8Department of Pha
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
The Etlingera rubroloba A.D Poulsen (E.rubroloba) plant is empirically used as a joint pain reliever, wound and fungus medicine by the people of Southeast Sulawesi. This plant has never been reported regarding toxicity and biofilm against C. albicans, but other activities have been reported previously. This study aims to determine the acute toxicity of ethanol extract of Etlingera rubroloba using zebrafish, antifungal and antibiofilm activity against C.albicans, using 5 concentration of 625, 1250, 2500, 5000 and 10000µg/mL.The results of the acute toxicity test ethanol extracts of stems, fruits and rhizomes, respectively to LC50 3898.23, 10310.52 and 4065.10µg/mL based on probit analysis. The highest inhibitory values in antifungal (10,000µg/mL) were stem, fruit, rhizome and nystatin at 80.28; 81.98; 81.53 and 80.99%, respectively. In the antibiofilm test, the highest inhibition value at 24 hours MBIC was in the stem, fruit, rhizome and nystatin as a positive control, respectively 77.83; 77.66; 78.42 and 78.62%. Then at 48 hours MBIC were 74.9, 74.63, 73.80 and 74.82%, respectively. The conclusion of this study is that the stem and rhizome category is slightly toxic and the fruit is practically non-toxic, and has activity as an antibiofilm of C. albicans.
Cite this article:
Asriullah Jabbar, Muhammad Ilyas Y, Hasyrul Hamzah, Anita Restu Puji Raharjeng, Rafika Sari, Titik Tri Handayani, Sylvia Utami Tunjung Pratiwi. Acute Toxicity Test of Zebrafish, Antifungal and Antibiofilm Activity of Etlingera rubroloba A.D Poulsen against Candida albicans. Research Journal of Pharmacy and Technology. 2024; 17(8):3613-9. doi: 10.52711/0974-360X.2024.00564
Cite(Electronic):
Asriullah Jabbar, Muhammad Ilyas Y, Hasyrul Hamzah, Anita Restu Puji Raharjeng, Rafika Sari, Titik Tri Handayani, Sylvia Utami Tunjung Pratiwi. Acute Toxicity Test of Zebrafish, Antifungal and Antibiofilm Activity of Etlingera rubroloba A.D Poulsen against Candida albicans. Research Journal of Pharmacy and Technology. 2024; 17(8):3613-9. doi: 10.52711/0974-360X.2024.00564 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-8-12
REFERENCES:
1. Hamzah H, Hertiani T, Pratiwi SUT, Murti YB, Nuryastuti T. The Inhibition and Degradation Activity of Demethoxycurcumin as Antibiofilm on C. albicans ATCC 10231. Research Journal of Pharmacy and Technology. 2020; 13(1): 377-382. doi:10.5958/0974-360X.2020.00075.X
2. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013; 4(2): 119-128. doi:10.4161/viru.22913
3. Nobile CJ, Johnson AD. Candida albicans Biofilms and Human Disease. Annual Review of Microbiology. 2015; 69(1): 71-92. doi:10.1146/annurev-micro-091014-104330
4. Rodríguez-Cerdeira C, Gregorio MC, Molares-Vila A, et al. Biofilms and vulvovaginal candidiasis. Colloids and Surfaces B: Biointerfaces. 2019; 174: 110-125. doi:10.1016/j.colsurfb.2018.11.011
5. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011; 2(5): 445-459. doi:10.4161/viru.2.5.17724
6. Pratiwi SU, Lagendijk E, Weert SD, Hertiani T, Idroes R, Hondel CVD. Effect of Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. Essential Oils on Planktonic Growth and Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus In Vitro. International Journal of Applied Research in Natural Products. Published online March 9, 2015. Accessed March 11, 2023. https://www.semanticscholar.org/paper/Effect-of-Cinnamomum-burmannii-Nees-ex-Bl.-and-Oils-Pratiwi-Lagendijk/34d78a231dc286f955117d077bf9b107f84bbffe
7. Pratiwi SUT, Hamzah H. Inhibition and Degradation Activity of (Sapindus rarak seeds) ethanol extract against polymicrobial biofilm. Research Journal of Pharmacy and Technology. 2020; 13(11): 5425-5430. doi:10.5958/0974-360X.2020.00947.6
8. Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ. Intracellular bacterial biofilm-like pods in urinary tract infections. Science. 2003; 301(5629): 105-107. doi:10.1126/science.1084550
9. Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne). 2018; 5: 28. doi:10.3389/fmed.2018.00028
10. Cowan SE, Gilbert E, Liepmann D, Keasling JD. Commensal interactions in a dual-species biofilm exposed to mixed organic compounds. Appl Environ Microbiol. 2000; 66(10): 4481-4485. doi:10.1128/AEM.66.10.4481-4485.2000
11. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004; 2(2): 95-108. doi:10.1038/nrmicro821
12. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial Biofilms. Annual Review of Microbiology. 1995; 49(1): 711-745. doi:10.1146/annurev.mi.49.100195.003431
13. Harriott MM, Noverr MC. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob Agents Chemother. 2010; 54(9): 3746-3755. doi:10.1128/AAC.00573-10
14. Tiwari VK, Mishra BB. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry. Research Signpost; 2011.
15. Abdel-Hady H, Morsi EA, El-wakil EA. In-vitro Antimicrobial Potentialities of Phylunthus emblica Leaf Extract against Some Human Pathogens. Egyptian Journal of Chemistry. 2022; 65(7): 701-707. doi:10.21608/ejchem.2021.109577.4998
16. Ilyas M Y, Diantini A, Halimah E, et al. Phytochemical Analysis and Immunomodulatory Potential on Diabetic-Infected Tuberculosis by Fruit Etlingera rubroloba A.D. Poulsen. Pakistan J of Biological Sciences. 2022; 25(7): 669-675. doi:10.3923/pjbs.2022.669.675
17. Y MI, Diantini A, Ghozali M, Sahidin I, Fristiohady A. Immunomodulatory Potency Etlingera rubroloba A.D. Poulsen Fruit Ethanol extract against Macrophage Phagocytic Activity and CD4 Levels in Wistar Male Rats. Research Journal of Pharmacy and Technology. 2022; 15(9): 4067-4072. doi:10.52711/0974-360X.2022.00682
18. Daniel Jambun D, Ong KS, Lim YY, Tan JBL, Yap SW, Lee SM. Bactericidal and cytotoxic activity of a diarylheptanoid (etlingerin) isolated from a ginger ( Etlingera pubescens ) endemic to Borneo. J Appl Microbiol. 2019; 127(1): 59-67. doi:10.1111/jam.14287
19. Ghasemzadeh A, Jaafar HZE, Rahmat A, Ashkani S. Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior (Jack) R.M.Sm grown in different locations of Malaysia. BMC Complementary and Alternative Medicine. 2015; 15(1): 335. doi:10.1186/s12906-015-0838-6
20. Dewi AR, Nur’aini I, Bahri IS, Afifah HN, Fattah A, Tunjung WAS. Antihyperuricemic activity of ginger flower (Etlingera elatior Jack.) extract in beef broth-induced hyperuricemic rats (Rattus norvegicus). AIP Conference Proceedings. 2016; 1755(1): 140012. doi:10.1063/1.4958573
21. Chan E, Lim Y, Omar M. Antioxidant and antibacterial activity of leaves of Etlingera species (Zingiberaceae) in Peninsular Malaysia. Food Chemistry. 2007; 104: 1586-1593. doi:10.1016/j.foodchem.2007.03.023
22. Lachumy SJT, Sasidharan S, Sumathy V, Zuraini Z. Pharmacological activity, phytochemical analysis and toxicity of methanol extract of Etlingera elatior (torch ginger) flowers. Asian Pacific Journal of Tropical Medicine. 2010; 3(10): 769-774. doi:10.1016/S1995-7645(10)60185-X
23. Fristiohady A, Wahyuni W, Ilyas Y. M, et al. Hepatoprotective activity of Etlingera elatior (Jack) R.M. Smith Extract against CCl4 -induced Hepatic Toxicity in Male Wistar Rats. Research Journal of Pharmacy and Technology. 2020; 13: 2020. doi:10.5958/0974-360X.2020.00807.0
24. Mahdavi B. Chemical constituents of the aerial parts of Etlingera brevilabrum (Zingiberaceae). Scholars Research Library. 2014; 6(2): 360-365.
25. Daniel Jambun D, Dwiyanto J, Lim Y, et al. Investigation on the antimicrobial activities of gingers (Etlingera coccinea (Blume) S.Sakai and Nagam and EtlingerasessilantheraR.M.Sm.) endemic to Borneo. Journal of Applied Microbiology. 2017; 123. doi:10.1111/jam.13536
26. Ilyas M Y, Diantini A, Halimah E, et al. Potential Immunomodulator Fraction Fruit of Etlingera rubroloba A.D Poulsen Against Macrophage Phagocytosis And Interleukin-12 Levels In BCG-Stimulated Balb/C Mice. International Journal of Pharmaceutical Research. 2021; 13(1): 3262-3269. doi:org/10.31838/ijpr/2021.13.01.478
27. Ilyas Y. M, Sahidin I, Jabbar A, et al. Effect of Immunomodulating Extract and Some Isolates from Etlingera rubroloba A.D. Poulsen Fruits on Diabetic Patients with Tuberculosis. Molecules. 2023; 28(5): 2401. doi:10.3390/molecules28052401
28. Jabbar A, Wahyuono S, Puspitasari I, Sahidin I. Free radical scavenging activity of methanol extract and compounds isolated from stems of Etlingera rubroloba A.D Poulsen. International Journal of Pharmaceutical Research. 2021; 13(1): 1099-1105. doi:https://doi.org/10.31838/ijpr/2021.13.01.478
29. Jabbar A, Wahyuono S, Puspitasari I, Sahidin I. Xanthine Oxidase Inhibitory Activity and DPPH radical scavenging Assay of isolated compound from Etlingera rubroloba (Blume) A.D Poulsen stem. International Journal of Pharmaceutical Research. 2021; 13(1): 1994-2002. doi:https://doi.org/10.3188/ijpr/2021.13.01.316
30. Jabbar A, Sahidin I, Monstavevi S, Malaka M, Malik F, Ilyas MY. Antioxidant and Anti-Inflammatory Activity of Ethanol Extract Stem of Etlingera rubroloba A.D. Poulsen. Pakistan Journal of Biological Sciences. 2022; 25(10): 885-891. doi:10.3923/pjbs.2022.885.891
31. Praskova E, Voslarova E, Siroka Z, et al. Assessment of diclofenac LC50 reference values in juvenile and embryonic stages of the zebrafish (Danio rerio). Pol J Vet Sci. 2011; 14(4): 545-549. doi:10.2478/v10181-011-0081-0
32. Schulte C, Nagel R. Testing Acute Toxicity in the Embryo of Zebrafish, Brachydanio rerio, as an Alternative to the Acute Fish Test: Preliminary Results. Altern Lab Anim. 1994; 22(1): 12-19. doi:10.1177/026119299402200104
33. OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. Organisation for Economic Co-operation and Development; 2013. Accessed April 26, 2023. https://www.oecd-ilibrary.org/environment/test-no-236-fish-embryo-acute-toxicity-fet-test_9789264203709-en
34. Dodamani M, David M. Acute Toxicity, and Neurobehavioural Responses of Afidopyropen on Exposure to Freshwater Edible Fish, Cyprinus carpio (Linnaeus). Research Journal of Pharmacy and Technology. 2023; 16(1): 67-72. doi:10.52711/0974-360X.2023.00012
35. Yadav P, Verma M, Ahmed S, Singh A, Yadav S, Zahra K. Risk Assessment of Diclofenac Sodium on Zebra Fish, Danio rerio: Protein Estimation in Tissues. Research Journal of Pharmacy and Technology. 2019; 12(10): 4635-4638. doi:10.5958/0974-360X.2019.00797.2
36. Pierce CG, Uppuluri P, Tummala S, Lopez-Ribot JL. A 96 Well Microtiter Plate-based Method for Monitoring Formation and Antifungal Susceptibility Testing of Candida albicans Biofilms. JoVE. 2010; (44): 2287. doi:10.3791/2287
37. Hamzah H, Siregar KAAK, Suffiana Y, Yudhawan I, Nurwijayanto A. Antibacterial and antibiofilm activity of Begonia multangula Blume. leaf extractagainst Candida albicans. Food Res. 2022; 6(1): 260-268. doi:10.26656/fr.2017.6(1).560
38. Jabbar A, Hamzah H, Nandini E, et al. The Effectiveness of Begonia Multangula Blume Leaf Ethanol Extract as Polymicrobial Antibiofilm on Catheters. Egyptian Journal of Chemistry. 2022; 65(13). doi:10.21608/ejchem.2022.118622.5341
39. Leorita M, Mardikasari SA, Wahyuni W, Malaka MH, Sartinah A, Sahidin S. Aktivitas Antioksidan dan Toksisitas Akut Ekstrak Etanol Buah, Daun, Batang dan Rimpang Tanaman Wualae (Etlingera elatior (Jack) R.M. Smith). Pharmauho: Jurnal Farmasi, Sains, dan Kesehatan. 2019; 4(2). doi:10.33772/pharmauho.v4i2.6263
40. Government of Canada CC for OH and S. CCOHS: What is a LD50 and LC50? Published March 2, 2023. Accessed March 7, 2023. https://www.ccohs.ca/oshanswers/chemicals/ld50.html
41. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881-890. doi:10.3201/eid0809.020063
42. Hassan HE, Ahmed SH. Synergistic effect of Moringa Leaves and Antifungal on Candida albicans. Research Journal of Pharmacy and Technology. 2023; 16(3): 1369-1374. doi:10.52711/0974-360X.2023.00225
43. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15(2): 167-193. doi:10.1128/CMR.15.2.167-193.2002
44. R V, P DG. Characterization and Biofilm Detection among Clinically Important Candida Species. Research Journal of Pharmacy and Technology. 2016; 9(9): 1375-1378. doi:10.5958/0974-360X.2016.00263.8
45. Hamzah H, Pratiwi SUT, Hertiani T. Efficacy of Thymol and Eugenol Against Polymicrobial Biofilm. Indonesian Journal of Pharmacy. 2018; 29(4): 214. doi:10.14499/indonesianjpharm29iss4pp214
46. Hamzah H, Utami S, Hertiani T. Efficacy of C-10 Massoialactone against-Multispecies Microbial Biofilm. Biointerface Research in Applied Chemistry. 2022; 12: 3472-3487. doi:10.33263/BRIAC123.34723487
47. Hamzah H, Hertiani T, Utami Tunjung Pratiwi S, Nuryastuti T. The Inhibition Activity of Tannin on the Formation of Mono-Species and Polymicrobial Biofilm Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. TradMedJ. 2019; 24(2): 110. doi:10.22146/mot.44532
48. Rezeki S, Gani BA, Abdat M, et al. The Measurement of Candida albicans Tolerance under The Influence of Moringa oleifera. Research Journal of Pharmacy and Technology. 2023; 16(6): 2579-2583. doi:10.52711/0974-360X.2023.00423
49. Mukherjee PK, Zhou G, Munyon R, Ghannoum MA. Candida biofilm: a well-designed protected environment. Med Mycol. 2005; 43(3): 191-208. doi:10.1080/13693780500107554
50. E PG, P G. Characterization and detection of biofilm among clinical isolates of Candida species by tube method. Research Journal of Pharmacy and Technology. 2016; 9(12): 2109-2112. doi:10.5958/0974-360X.2016.00429.7
51. Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol. 2012; 2012: 528521. doi:10.1155/2012/528521
52. Fathima T, Rajeshkumar S, Nagalingam M. Green Synthesis of Silver Nanoparticles using Symplocos racemosa and its Antifungal Activity against Candida albicans. Research Journal of Pharmacy and Technology. 2021; 14(2): 775-778. doi:10.5958/0974-360X.2021.00135.9