Author(s):
Muhammad Seftian, Marlyn Dian Laksitorini, Teuku Nanda Saifullah Sulaiman
Email(s):
tn_saifullah@ugm.ac.id
DOI:
10.52711/0974-360X.2024.00578
Address:
Muhammad Seftian1, Marlyn Dian Laksitorini2, Teuku Nanda Saifullah Sulaiman2*
1Master in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Jl. Sekip Utara, Sleman, Yogyakarta 5528, Indonesia.
2Department of Pharmaceutics, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia, 5528.
*Corresponding Author
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
Valsartan has poor water solubility, particularly at a pH below 5 due to its pH-dependent solubility. This limits its bioavailability. To enhance the solubility and dissolution rate of valsartan solid dispersion, we prepared it using the spray drying technique in a ternary system. Kollidon VA64 and Kolliphor P407 were utilized in various ratios for its preparation. Drug solubility, crystallography, and dissolution of Val-ASD were evaluated to examine the effect of formulation on its physicochemical characteristics. The molecular interactions between the drug, polymer, and surfactant, as well as amorphization, were analysed using FTIR, DSC, and XRD. Optimisation was conducted utilising the full factorial design approach with a confidence level of 95%. Valsartan was prepared as a solid dispersion that showed a 39-fold increase in solubility compared to its pure form. Furthermore, the formulation was found to accelerate the rate of dissolution. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) profiles indicated complete amorphization, while the Fourier transform infrared (FTIR) profile displayed hydrogen bonding and hydrophobic interactions between the drug and matrix, which collectively contribute to its enhanced characteristics. Solubility and dissolution were improved in a dependent manner with respect to Kollidon VA64 and Kolliphor P407.
Cite this article:
Muhammad Seftian, Marlyn Dian Laksitorini, Teuku Nanda Saifullah Sulaiman. Enhancement of Valsartan Solubility by Amorphous solid Dispersion Ternary System: An Optimization and Characterization. Research Journal of Pharmacy and Technology. 2024; 17(8):3717-4. doi: 10.52711/0974-360X.2024.00578
Cite(Electronic):
Muhammad Seftian, Marlyn Dian Laksitorini, Teuku Nanda Saifullah Sulaiman. Enhancement of Valsartan Solubility by Amorphous solid Dispersion Ternary System: An Optimization and Characterization. Research Journal of Pharmacy and Technology. 2024; 17(8):3717-4. doi: 10.52711/0974-360X.2024.00578 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-8-26
REFERENCES:
1. Himawan A. Djide NJN. Mardikasari SA. Utami RN. Arjuna A. Donnelly RF et al A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur J Pharm Sci. 2022; 168. doi.org/10.1016/j.ejps.2021.106057.
2. Siddiqui N. Husain A. Chaudhry L. Alam MS. Mitra M. Bhasin PS Pharmacological and pharmaceutical profile of valsartan: A review. J Appl Pharm Sci. 2011; 1(9): 11–9.
3. Kristin E. Endarti D. Febrinasari RP. Nugrahaningsih DAG. Pratiwi WR Budget Impact Analysis of Sacubitril Valsartan in the Treatment of Heart Failure and Reduced Ejection Fraction (HFrEF) in Indonesia. Indones J Pharm. 2022; 33(1): 83–92.
4. Medarević D. Cvijić S. Dobričić V. Mitrić M. Djuriš J. Ibrić S Assessing the potential of solid dispersions to improve dissolution rate and bioavailability of valsartan: In vitro-in silico approach. Eur J Pharm Sci. 2018; 124: 188-98. doi.org/10.1016/j.ejps.2018.08.026
5. Flesch G. Müller P. Lloyd P Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol. 1997; 52(2): 115–20.doi.org/10.1007/s002280050259.
6. Fadhila M. Wahyuni R. Halim A. Proklawati H Effectiveness of Dry Grinding and Wet Grinding Methods on Physicochemical Properties, Solubility, and Dissolution Rate of Nimodipine-HPMC Nanoparticles. Indones J Pharm. 2023; 34(4): 567–73.
7. Li Y. Li C. Gao X. Lv H Nitazoxanide in aqueous co-solvent solutions of isopropanol/DMF/NMP: Solubility, solvation thermodynamics and intermolecular interactions. J Chem Thermodyn. 2023; 176. doi.org/10.1016/j.jct.2022.106928
8. Laksitorini MD. Suryani LU. Muhammad FR. Purnomo H Application of Hildebrand Solubility Parameter to Identify Ethanol-Free Co-Solvent for Pediatric Formulation. Indones J Pharm. 2023; 34(2): 218–26.
9. Suresh A. Gonde S. Mondal PK. Sahoo J. Chopra D Improving solubility and intrinsic dissolution rate of o fl oxacin API through salt formation via mechanochemical synthesis with diphenic acid. J Mol. Struc. 2020;1221.doi.org/10.1016/j.molstruc.2020.128806
10. Abdullah A. Mutmainnah. Wikantyasning ER Cocrystals of Cefixime with Nicotinamide_ Improved Solubility, Dissolution, and Permeability. Indones J Pharm. 2022;33(3):394–400.
11. Bhaduka G. Rajawat JS Formulation development and solubility enhancement of voriconazole by solid dispersion technique. Res J Pharm Technol. 2020; 13(10): 4557. doi.org/10.5958/0974-360x.2020.00803.3.
12. Haleem A. Javaid M. Pratap R. Rab S. Suman R Applications of nanotechnology in medical field : a brief review. Global Health Journal. 2023; 7: 70–7. doi.org/10.1016/j.glohj.2023.02.008.
13. Fu Q. Lu H. Xie Y. Liu J. Han Y. Gong N Salt formation of two BCS II drugs (indomethacin and naproxen) with and thermodynamics analysis. J Mol Struc. 2019; 1185: 281–9. https://doi.org/10.1016/j.molstruc.2019.02.104.
14. Baghel S. Cathcart H. O’Reilly NJ Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J Pharm Sci. 2016; 105(9): 2527–44. doi.org/10.1016/j.xphs.2015.10.008.
15. Saker R. Ibrahim W. Haroun M Preparation and evaluation of nifedipine solid dispersions. Res J Pharm Technol. 2020; 13(9): 4148. doi.org/10.5958/0974-360x.2020.00732.5
16. Seftian M. Laksitorini MD. Sulaiman, TNS Use of Surfactants in Ternary Solid Dispersion Systems: Benefits and Risks. Maj Farm. 2023; 19(4): 474–83.
17. Choi JS. Park JS Design of PVP/VA S-630 based tadalafil solid dispersion to enhance the dissolution rate. Eur J Pharm Sci. 2017; 97: 269–76.doi.org/10.1016/j.ejps.2016.11.030
18. Eloy JO. Saraiva J. De Albuquerque S. Marchetti JM Preparation, characterization and evaluation of the in vivo trypanocidal activity of ursolic acid-loaded solid dispersion with poloxamer 407 and sodium caprate. Brazilian J Pharm Sci. 2015; 51(1): 101–9. doi.org/10.1590/S1984-82502015000100011.
19. Szafraniec-Szczęsny J. Antosik-Rogóż A. Kurek M. Gawlak K. Górska A. Peralta S. et al How does the addition of kollidon®va64 inhibit the recrystallization and improve ezetimibe dissolution from amorphous solid dispersions? Pharmaceutics. 2021; 13(2): 1–15. https://doi.org/10.3390/pharmaceutics13020147.
20. Que C. Lou X. Zemlyanov DY. Mo H. Indulkar AS. Gao Y. et al Insights into the Dissolution Behavior of Ledipasvir-Copovidone Amorphous Solid Dispersions: Role of Drug Loading and Intermolecular Interactions. Mol Pharm. 2019; 16(12): 5054–67. doi.org/10.1021/acs.molpharmaceut.9b01025
21. Vasconcelos T. Prezotti F. Araújo F. Lopes C. Loureiro A. Marques S. et al Third-generation solid dispersion combining Soluplus and poloxamer 407 enhances the oral bioavailability of resveratrol. Int J Pharm. 2021; 595. doi.org/10.1016/j.ijpharm.2021.120245.
22. Guan J. Jin L. Liu Q. Xu H. Wu H. Zhang X. et al Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur J Pharm Sci. 2019; 139. doi.org/10.1016/j.ejps.2019.105043
23. Yang R. Zhang GGZ. Kjoller K. Dillon E. Purohit HS. Taylor LS Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm. 2022; 619. doi.org/10.1016/j.ijpharm.2022.121708
24. Yen C-W. Kuhn R. Hu C. Zhang W. Chiang P-C. Chen JZ. et al Impact of surfactant selection and incorporation on in situ nanoparticle formation from amorphous solid dispersions. Int J Pharm. 2021; 607. https://doi.org/10.1016/j.ijpharm.2021.120980
25. Chen Y. Wang S. Wang S. Liu C. Su C. Hageman M. et al Sodium Lauryl Sulfate Competitively Interacts with HPMC-AS and Consequently Reduces Oral Bioavailability of Posaconazole/HPMC-AS Amorphous Solid Dispersion. Mol Pharm. 2016; 13(8): 2787–95. doi.org/10.1021/acs.molpharmaceut.6b00391
26. Chella N. Daravath B. Kumar D. Tadikonda RR Formulation and Pharmacokinetic Evaluation of Polymeric Dispersions Containing Valsartan. Eur J Drug Metab Pharmacokinet. 2016; 41(5): 517–26.doi.org/10.1007/s13318-015-0290-5
27. USP. Apparent Intrinsic Dissolution. In: The United States Pharmacopeial. Rockville: The United States Pharmacopeial Convention; 2011. p. 660.
28. Xu W. Sun Y. Du L. Chistyachenko YS. Dushkin A V. Su W Investigation on solid dispersions of valsartan with alkalizing agents: Preparation, characterization and physicochemical properties. J Drug Deliv Sci Technol. 2018; 44: 399–405. doi.org/10.1016/j.jddst.2018.01.012
29. Shah S. Patel R. Soniwala M. Chavda J Development and optimization of press coated tablets of release engineered valsartan for pulsatile delivery. Drug Dev Ind Pharm. 2015; 41(11): 1835–46. doi.org/10.3109/03639045.2015.1014374
30. Lu Y. Chen J. Yi S. Xiong S Enhanced felodipine dissolution from high drug loading amorphous solid dispersions with PVP/VA and sodium dodecyl sulfate. J Drug Deliv Sci Technol. 2019; 53. doi.org/10.1016/j.jddst.2019.101151
31. Yan YD. Sung JH. Kim KK. Kim DW. Kim JO. Lee BJ. et al Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm. 2012; 422(1–2): 202–10. doi.org/10.1016/j.ijpharm.2011.10.053
32. Saha SK. Joshi A. Singh R. Jana S. Dubey K. Joshi A. et al An investigation into solubility and dissolution improvement of Alectinib Hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol. 2023; 1–8. doi.org/10.1016/j.jddst.2023.104259
33. Indulkar AS. Lou X. Zhang GGZ. Taylor LS Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Mol Pharm. 2019; 16(3): 1327–39. doi.org/10.1021/acs.molpharmaceut.8b01261
34. Laksitorini M. Prarasasty VD. Kiptoo PK. Siahaan TJ Pathways and progress in improving drug delivery through the intestinal mucosa and blood–brain barriers. Ther Deliv. 2014; 5(10): 1143–63.
35. Correa-Soto CE. Gao Y. Indulkar AS. Zhang GGZ. Taylor LS Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Int J Pharm. 2022; 625. doi.org/10.1016/j.ijpharm.2022.122120.
36. Lang B. McGinity JW. Williams RO Dissolution enhancement of itraconazole by hot-melt extrusion alone and the combination of hot-melt extrusion and rapid freezing-effect of formulation and processing variables. Mol Pharm. 2014; 11(1): 186–96. doi.org/10.1021/mp4003706
37. Pinto JMO. Leão AF. Riekes MK. França MT. Stulzer HK HPMCAS as an effective precipitation inhibitor in amorphous solid dispersions of the poorly soluble drug candesartan cilexetil. Carbohydr Polym. 2018; 184: 199–206. doi.org/10.1016/j.carbpol.2017.12.052
38. Xi Z. Fei Y. Wang Y. Lin Q. Ke Q. Feng G. et al Solubility improvement of curcumin by crystallization inhibition from polymeric surfactants in amorphous solid dispersions. J Drug Deliv Sci Technol. 2023.doi.org/10.1016/j.scitotenv.2020.138954
39. Shamma RN. Basha M Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder Technol. 2013; 237: 406–14. doi.org/10.1016/j.powtec.2012.12.038
40. Surwase SA. Itkonen L. Aaltonen J. Saville D. Rades T. Peltonen L. et al Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension. Eur J Pharm Biopharm. 2015; 96: 32–43. doi.org/10.1016/j.ejpb.2015.06.005
41. Tian Y. Jones DS. Andrews GP An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems. Mol Pharm. 2015; 12(4): 1180–92. doi.org/10.1021/mp500702s
42. Davis MT. Potter CB. Mohammadpour M. Albadarin AB. Walker GM Design of spray dried ternary solid dispersions comprising itraconazole, soluplus and HPMCP: Effect of constituent compositions. Int J Pharm. 2017; 519(1–2): 365–72. doi.org/10.1016/j.ijpharm.2017.01.043