Author(s): Samer Y. Alqaraleh, Wael A. Al-Zereini, Nesrin R. Mwafi, Sahar M. Jaffal, Aiman I. Al-Qtaitat

Email(s): garalleh75@mutah.edu.jo

DOI: 10.52711/0974-360X.2024.00629   

Address: Samer Y. Alqaraleh1*, Wael A. Al-Zereini2, Nesrin R. Mwafi3, Sahar M. Jaffal4, Aiman I. Al-Qtaitat5,6
1Faculty of Allied Medical Sciences, Mutah University, Al-Karak 61710, Jordan.
2Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak 61710, Jordan. 3Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mutah University, Jordan.
4Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan.
5Faculty of Dentistry, Zarqa University. Zarqa, Jordan.
6Faculty of Medicine, Department of Anatomy and Histology, Mutah University, Al-Karak, Jordan.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
The synthesis of nanoparticles has garnered significant attention due to their wide range of applications and exceptional properties and due to the toxicity of chemicals used in conventional methods, a matter that imposes considerable risks to human health and the environment. As a response to this issue, eco-friendly alternatives known as green synthesis techniques have emerged such as selenium nanoparticles (SeNPs) that hold great promise in biomedical applications. Green synthesis which utilizes plants, microorganisms, and waste materials offers distinct advantages including precise control over the size and shape of the nanoparticles. By carefully optimizing various parameters, this approach enables the production of uniform and stable SeNPs. Importantly, green synthesis eliminates the need for hazardous chemicals, thereby reducing environmental pollution and potential harm to human health. The process typically involves heating a mixture of sodium selenite, plant extracts or culturing microorganisms with selenium precursors to facilitate the formation of SeNPs. Various techniques such as UV-visible (UV-Vis) spectrophotometry, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) are used to characterize these SeNPs. Of note, bacterial-mediated synthesis of SeNPs, achieved through intracellular or extracellular processes, effectively reduces selenium ions into SeNPs. To add, the type of the plant extract plays a crucial role andit was found that different extracts yield SeNPs with distinct properties. Moreover, a large body of evidence revealed that the plant extracts that are rich in reducing and stabilizing agents such as flavonoids and alkaloids can reduce selenium ions into SeNPsresulting in a biocompatible surface. Accordingly, green synthesis methods that employ plant extracts and bacteria hold great promise and sustainability, as they allow a control over the shapes of nanoparticles and the generation of unique properties tailored for biomedical applications. These approaches are not only cost-effective but also environmentallyfriendly, consistently producing nanoparticles with narrow size distributions. Despite certain limitations of this approach, the potential of green synthesis in nanoparticle synthesis is undeniable.


Cite this article:
Samer Y. Alqaraleh, Wael A. Al-Zereini, Nesrin R. Mwafi, Sahar M. Jaffal, Aiman I. Al-Qtaitat. The Green Synthesis of Selenium Nanoparticles: A Comprehensive Review on Methodology, Characterization and Biomedical Applications. Research Journal of Pharmacy and Technology.2024; 17(8):4054-2. doi: 10.52711/0974-360X.2024.00629

Cite(Electronic):
Samer Y. Alqaraleh, Wael A. Al-Zereini, Nesrin R. Mwafi, Sahar M. Jaffal, Aiman I. Al-Qtaitat. The Green Synthesis of Selenium Nanoparticles: A Comprehensive Review on Methodology, Characterization and Biomedical Applications. Research Journal of Pharmacy and Technology.2024; 17(8):4054-2. doi: 10.52711/0974-360X.2024.00629   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2024-17-8-77


8. REFERENCES:
1.    Alam H, Khatoon N, Raza M, Ghosh PC, Sardar M. Synthesis and Characterization of Nano Selenium Using Plant Biomolecules and Their Potential Applications. Bionanoscience. 2019; 9(1): 96-104. https://doi.org/10.1007/s12668-018-0569-5.
2.    Menon S, Shanmugam VK. Cytotoxicity Analysis of Biosynthesized Selenium Nanoparticles Towards A549 Lung Cancer Cell Line. J Inorg Organomet Polym Mater. 2020; 30(5): 1852-1864. https://doi.org/10.1007/s10904-019-01409-4.
3.    El-Seedi HR, El-Shabasy RM, Khalifa SAM, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Adv. 2019; 9(42): 24539-24559. https://doi.org/10.1039/c9ra02225b.
4.    Maiyo F, Singh M. Selenium nanoparticles: Potential in cancer gene and drug delivery. Nanomedicine. 2017; 12(9): 1075-1089. https://doi.org/10.2217/nnm-2017-0024.
5.    Hassan SED, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM. New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci. 2018; 11(3): 262-270. https://doi.org/10.1016/j.jrras.2018.05.003.
6.    Mansour M, Mohamed MF, Elhalwagi A, El-Itriby HA, Shawki HH, Abdelhamid IA. Moringa peregrina Leaves Extracts Induce Apoptosis and Cell Cycle Arrest of Hepatocellular Carcinoma. Biomed Res Int. 2019; 2019. https://doi.org/10.1155/2019/2698570.
7.    Gunti L, Dass RS, Kalagatur NK. Phytofabrication of selenium nanoparticles from emblica officinalis fruit extract and exploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Front Microbiol. 2019; 10(APR): 1-17. https://doi.org/10.3389/fmicb.2019.00931.
8.    Liu F, Liu H, Liu R, et al. Delivery of sesamol using polyethylene glycol-functionalized selenium nanoparticles in human liver cells in culture.  J Agric Food Chem. 2019; Mar 13; 67(10): 2991-2998. https://doi.org/10.1021/acs.jafc.8b06924.
9.    Anu K, Devanesan S, Prasanth R, AlSalhi MS, Ajithkumar S, Singaravelu G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. journal of king saud university - science. 2020; 32(4): 2520-2526. https://doi.org/10.1016/j.jksus.2020.04.018.
10.    Alagesan V, Venugopal S. Green Synthesis of Selenium Nanoparticle Using Leaves Extract of Withaniasomnifera and Its Biological Applications and Photocatalytic Activities. Bionanoscience. 2019; 9(1): 105-116. https://doi.org/10.1007/s12668-018-0566-8.
11.    Vyas J, Rana S. Antioxidant activity and green synthesis of selenium nanoparticles using allium sativum extract. Int J Phytomedicine. 2017; 9(4): 634. https://doi.org/10.5138/09750185.2185.
12.    Kumar A, Prasad KS. Biogenic selenium nanoparticles for their therapeutic application. Asian Journal of Pharmaceutical and Clinical Research. 2020; 13(1): 4-9. https://doi.org/10.22159/ajpcr.v13i1.35599.
13.    Tsivileva O, Pozdnyakov A, Ivanova A. Polymer nanocomposites of selenium biofabricated using fungi. Molecules. 2021; 26(12): 1-31. https://doi.org/10.3390/molecules26123657.
14.    Ullah A, Yin X, Wang F, et al. Biosynthesis of selenium nanoparticles (Via bacillus subtilis bsn313), and their isolation, characterization, and bioactivities. Molecules. 2021; 26(18). https://doi.org/10.3390/molecules26185559.
15.    Sentkowska A, Pyrzyńska K. Antioxidant Properties of Selenium Nanoparticles Synthesized Using Tea and Herb Water Extracts. Applied Sciences. 2023; 13(2): 1071. https://doi.org/10.3390/app13021071.
16.    Al-qaraleh, S., Al-Zereini, W., Oran S. Phyto-Decoration of Selenium Nanoparticles Using Moringa peregrina ( Forssk .) Fiori Aqueous Extract: Chemical Characterization and Bioactivity Evaluation. Biointerface Res Appl Chem. 2022; 13(2). https://doi.org/10.33263/BRIAC132.112.
17.    S M, S.D K, H A & S V. Efficacy of Biogenic Selenium Nanoparticles from an Extract of Ginger towards Evaluation on Anti-Microbial and Anti-Oxidant Activities. Colloid and Interface Science Communications. 2019; 29:1–8.  https://doi.org/10.1016/j.colcom.2018.12.004.
18.    Pyrzynska, K., Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J Nanostruct Chem. 2022; 12, 467–480. https://doi.org/10.1007/s40097-021-00435-4.
19.    Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Naveen KV, Wang MH. Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. MicrobPathog. 2022; 167: 105544. https://doi.org/10.1016/j.micpath.2022.105544.
20.    Ikram M, Javed B, Raja NI, Mashwani ZUR. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int J Nanomedicine. 2021; 16: 249-268. https://doi.org/10.2147/IJN.S295053.
21.    Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules. 2022; 12(5). https://doi.org/10.3390/biom12050627.
22.    Zambonino MC, Quizhpe EM, Jaramillo FE, et al. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int J Mol Sci. 2021; 22(3): 1-34. https://doi.org/10.3390/ijms22030989.
23.    Bisht N, Phalswal P, Khanna PK. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater Adv. 2022; 3(3): 1415-1431. https://doi.org/10.1039/d1ma00639h.
24.    Al-Qaraleh SY, Al-Zereini WA, Oran SA, Al-Sarayreh AZ, Al-Dalain SM. Evaluation of the antioxidant activities of green synthesized selenium nanoparticles and their conjugated polyethylene glycol (PEG) form in vivo. OpenNano. 2022; 8. https://doi.org/10.1016/j.onano.2022.100109.  
25.    Shahbaz M, Akram A, Raja NI, Mukhtar T, Mehak A, Fatima N, Ajmal M, Ali K, Mustafa N, Abasi F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS One. 2023; 7; 18(2): e027467. https://doi.org/10.1371/journal.pone.0274679.
26.    Zhang L, Li Z, Zhang L, et al. High-Efficiency Reducing Strain for Producing Selenium Nanoparticles Isolated from Marine Sediment. Int J Mol Sci. 2022; 23(19): 11953. https://doi.org/10.3390/ijms231911953.
27.    Joshi SM, De Britto S, Jogaiah S, Ito SI. Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules. 2019; 9(9). https://doi.org/10.3390/biom9090419.
28.    Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler CS, Vallini G. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeiTE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact. 2014; 13(1): 1-14. https://doi.org/10.1186/1475-2859-13-35.
29.    Wang M, Jiang D, Huang X. Selenium nanoparticle rapidly synthesized by a novel highly selenite-tolerant strain Proteus penneri LAB-1. iScience. 2022; 25(9): 104904. https://doi.org/10.1016/j.isci.2022.104904.
30.    Bahrulolum H, Nooraei S, Javanshir N, et al. green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnology. 2021; 19(1): 86. Published 2021 Mar 26. https://doi.org/10.1186/s12951-021-00834-3.
31.    Pyrzynska, K., Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J Nanostruct Chem 12, 467–480 (2022). https://doi.org/10.1007/s40097-021-00435-4.
32.    Zambonino MC, Quizhpe EM, Jaramillo FE, et al. Green Synthesis of Selenium and Tellurium Nanoparticles: Current Trends, Biological Properties and Biomedical Applications. Int J Mol Sci. 2021; 22(3): 989. Published 2021 Jan 20. https://doi.org/10.3390/ijms22030989.
33.    Zambonino MC, Quizhpe EM, Jaramillo FE, et al. Green Synthesis of Selenium and Tellurium Nanoparticles: Current Trends, Biological Properties and Biomedical Applications. Int J Mol Sci. 2021; 22(3): 989. Published 2021 Jan 20. https://doi.org-10.3390/ijms22030989.
34.    Ullah A, Yin X, Wang F, et al. Biosynthesis of Selenium Nanoparticles (via Bacillus subtilis BSN313), and Their Isolation, Characterization, and Bioactivities. Molecules. 2021; 26(18): 5559. Published 2021 Sep 13. https://doi.org/10.3390/molecules26185559.
35.    Cremonini E, Zonaro E, Donini M, et al. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. MicrobBiotechnol. 2016; 9(6): 758-771. https://doi.org/10.1111/1751-7915.12374.
36.    Truong LB, Medina-Cruz D, Mostafavi E, Rabiee N. Selenium nanomaterials to combat antimicrobial resistance. Molecules. 2021; 26(12): 1-18. https://doi.org/10.3390/molecules26123611.
37.    El-Saadony MT, Saad AM, Taha TF, et al. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J Biol Sci. 2021; 28(12): 6782-6794. https://doi.org/10.1016/j.sjbs.2021.07.059.
38.    Adebayo EA, Azeez MA, Alao MB, Oke AM, Aina DA. Fungi as veritable tool in current advances in nanobiotechnology. Heliyon. 2021; 7(11). https://doi.org/10.1016/j.heliyon.e08480.
39.    Gharieb, M. M., & Wilkinson, S. C. (2007), Biometals, 20(1), 117-131, https://doi.org/10.1007/s10534-006-9009-3.
40.    Choudhary, R. C., et al. (2012), Environmental Science and Pollution Research, 19(9): 3344-3355, https://doi.org/10.1007/s11356-012-1031-0.
41.    Zambonino, M.C.; Quizhpe, E.M.; Mouheb, L.; Rahman, A.; Agathos, S.N.; Dahoumane, S.A. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. Nanomaterials 2023; 13: 424. https://doi.org/10.3390/nano13030424.
42.    Amin BH, Ahmed HY, El Gazzar EM, Badawy MMM. Enhancement the Mycosynthesis of Selenium Nanoparticles by Using Gamma Radiation. Dose-Response. 2021; 19(4): 1-8. doi:10.1177/15593258211059323.
43.    Amin MA, Ismail MA, Badawy AA, Awad MA, Hamza MF, Awad MF, Fouda A. The Potency of Fungal-Fabricated Selenium Nanoparticles to Improve the Growth Performance of Helianthus annuus L. and Control of Cutworm Agrotisipsilon. Catalysts. 2021; 11(12): 1551. https://doi.org/10.3390/catal11121551.
44.    Saied E, Mekky AE, Al-Askar AA, Hagag AF, El-bana AA, Ashraf M, Walid A, Nour T, Fawzi MM, Arishi AA, et al. Aspergillus terreus-Mediated Selenium Nanoparticles and Their Antimicrobial and Photocatalytic Activities. Crystals. 2023; 13(3): 450. https://doi.org/10.3390/cryst13030450.
45.    Asghari-Paskiabi, F., Imani, M., Razzaghi-Abyaneh, M., Rafii-Tabar, H. Fusarium oxysporum, a bio-Factory for Nano Selenium Compounds: Synthesis and Characterization. Scientia Iranica, 2018; 25(3): 1857-1863. https://doi.org/10.24200/sci.2018.5301.1192.
46.    Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N. Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerosporagraminicola in pearl millet. Sci Rep. 2017; 7(1): 2612. https://doi.org/10.1038/s41598-017-02737-6.
47.    Ahamad Tarmizi AA, Nik Ramli NN, Adam SH, Abdul Mutalib M, Mokhtar MH, Tang SGH. Phytofabrication of Selenium Nanoparticles with Moringa oleifera (MO-SeNPs) and Exploring Its Antioxidant and Antidiabetic Potential. Molecules. 2023; 28(14): 5322. https://doi.org/10.3390/molecules28145322.
48.    Kamnev AA, Dyatlova YA, Kenzhegulov OA, Vladimirova AA, Mamchenkova PV, Tugarova AV. Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects. Molecules. 2021; 26(4): 1146. https://doi.org/10.3390/molecules26041146.
49.    Ali A, Chiang YW, Santos RM. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals. 2022; 12(2): 205. https://doi.org/10.3390/min12020205.
50.    Verma P, Maheshwari SK. Preparation of Sliver and Selenium Nanoparticles and Its Characterization by Dynamic Light Scattering and Scanning Electron Microscopy. J MicroscUltrastruct. 2018; 6(4): 182-187. https://doi.org/10.4103/JMAU.JMAU_3_18.
51.    Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. Eur J Histochem. 2018; 62(1): 2841. Published 2018 Mar 15. https://doi.org/10.4081/ejh.2018.2841.
52.    Abbas Rahdar; Nooshin Amini; Faezeh Askari; Md. Abu Bin Hasan Susan. "Dynamic light scattering: A useful technique to characterize nanoparticles". Journal of Nanoanalysis, 6, 2, 2019, 80-89. https://doi.org/10.22034/jna.2019.667079.
53.    Sribenjarat, P., N. Jirakanjanakit, and K. Jirasripongpun. “Selenium Nanoparticles Biosynthesized by Garlic Extract As Antimicrobial Agent”. Science, Engineering and Health Studies. 2020; 14 (1): 22-31. https://doi.org/10.14456/sehs.2020.3.
54.    Vundela SR, Kalagatur NK, Nagaraj A, et al. Multi-Biofunctional Properties of Phytofabricated Selenium Nanoparticles from Carica papaya Fruit Extract: Antioxidant, Antimicrobial, Antimycotoxin, Anticancer, and Biocompatibility. Front Microbiol. 2022; 12: 1-19. https://doi.org/10.3389/fmicb.2021.769891.
55.    Ogunleye GE, Oyinlola KA, Akintade O, Fashogbon R, Adesina T. Green synthesis, Characterization and Antimicrobial potential of Selenium Nanoparticles from Ocimumgratissimum. Turkish J Agric - Food Sci Technol. 2022; 10(2): 2903-2912. https://doi.org/10.24925/turjaf.v10isp2.2903-2912.5615.
56.    Kora AJ, Rastogi L. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. J Environ Manage. 2016; 181: 231-236. https://doi.org/10.1016/j.jenvman.2016.06.029.
57.    Dhanjal S, Cameotra SS. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact. 2010; 9: 1-11. https://doi.org/10.1186/1475-2859-9-52.
58.    El-Batal AI, Mosallam FM, Ghorab MM, et al. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int J Biol Macromol. 2020; 156: 1584-1599. https://doi.org/10.1016/j.ijbiomac.2019.11.210.
59.    Liang X, Perez MAMJ, Nwoko KC, et al. Fungal formation of selenium and tellurium nanoparticles. Appl MicrobiolBiotechnol. 2019; 103(17): 7241-7259. https://doi.org/10.1007/s00253-019-09995-6.
60.    Rehman, A., John, P., & Bhatti, A. Biogenic Selenium Nanoparticles: Potential Solution to Oxidative Stress Mediated Inflammation in Rheumatoid Arthritis and Associated Complications. Nanomaterials. 2021; 11(8): 2005. https://doi.org/10.3390/nano11082005.
61.    DkhilMA, Zrieq R, Al-Quraishy S, Abdel Moneim AE. Selenium Nanoparticles Attenuate Oxidative Stress and Testicular Damage in Streptozotocin-Induced Diabetic Rats. Molecules. 2016; 21(11): 1517. https://doi.org/10.3390/molecules21111517.
62.    Yue D, Zeng C, Okyere SK, Chen Z, Hu Y. Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. Journal of Trace Elements in Medicine and Biology. 2021; 1(64): 126680. https://doi.org/10.1016/j.jtemb.2020.126680.
63.    Liao G, Tang J, Wang D. Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J Surg Oncol. 2020; 18(1): 81. https://doi.org/10.1186/s12957-020-01850-7.
64.    Yuan, Q.; Xiao, R.; Afolabi, M.; Bomma, M.; Xiao, Z. Evaluation of Antibacterial Activity of Selenium Nanoparticles against Food-Borne Pathogens. Microorganisms. 2023; 11: 1519. https://doi.org/10.3390/microorganisms11061519.
65.    Narmani A., Rezvani M., Farhood B., Darkhor P., Mohammadnejad J., Amini B., Refahi S., Goushbolagh N.A. Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Develop. Res. 2019; 80: 404–424. https://doi.org/10.1002/ddr.21545.
66.    Jamal QMS. Antiviral Potential of Plants against COVID-19 during Outbreaks-An Update. Int J Mol Sci. 2022; Nov 5; 23(21): 13564. doi: 10.3390/ijms232113564. PMID: 36362351; PMCID: PMC9655040.
67.    Vinay C H, Prakash Goudanavar, Ankit Acharya, Mohammed Gulzar Ahmed, Prem Kumar S R. Development and Characterization of Orange Peel Extract Based Nanoparticles. Asian J. Pharm. Res. 2018; 8(2): 71-77. http://doi.org/10.5958/2231-5691.2018.00012.6.
68.    Sarika V. Khandbahale, R. B. Saudagar. Nanoparticle- A Review. Asian J. Res. Pharm. Sci. 2017; 7(3): 162-172. doi: http://doi.org/ 10.5958/2231-5659.2017.00026.1.
69.    Vaibhav S. Suryawanshi, Akshay R. Yadav, Rushikesh M. Birajdar, Nisha M. Jagtap, Ganesh B. Vambhurkar, Pramod A. Patil. Optimization of Ayurvedic Herbal Medicines by Nanoformulation. Asian J. Res. Pharm. Sci. 2019; 9(1): 55-56. doi: http://doi.org/10.5958/2231-5659.2019.00009.2.
70.    Reshma Chauhan, Charmi Patel, Jitendriya Panigrahi. Greener approach for copper nanoparticles synthesis from Catharanthus roseus and Azadirachta indica leaf extract and their antibacterial and antioxidant activities. Asian J. Res. Pharm. Sci. 2018; 8(2): 81-90. doi: http://doi.org/10.5958/2231-5659.2018.00016.4.
71.    K. Thangavel. Selenium Properties for Anti-Cancer. Research J. Pharm. and Tech. 2017; 10(10): 3595-3597. doi: http://doi.org/ 10.5958/0974-360X.2017.00651.5.
72.    Wissam Zam, Mohamad Alshahneh, Azez Hasan. Methods of Spectroscopy for Selenium Determination: A Review. Research J. Pharm. and Tech. 2019; 12(12): 6149-6152. doi: http://doi.org/10.5958/0974-360X.2019.01068.0.
73.    B. Madhumitha, Preetha Santhakumar, M. Jeevitha, S. Rajeshkumar. Green Synthesis of Selenium Nanoparticle using Capparis decidua fruit extract and its Characterization using Transmission Electron Microscopy And UV- Visible Spectroscopy. Research Journal of Pharmacy and Technology. 2021; 14(4): 2129-2. doi: http://doi.org/10.52711/0974-360X.2021.00377.
74.    Sneka S, Preetha Santhakumar. Antibacterial Activity of Selenium Nanoparticles extracted from Capparis decidua against Escherichia coli and Lactobacillus Species. Research Journal of Pharmacy and Technology. 2021; 14(8): 4452-4. doi: http://doi.org/10.52711/0974-360X.2021.00773.
75.    Indranil Singh. A Review on in-Vivo Imaging of Cancer Cells by Bioconjugated Quantum Dots. Asian J. Pharm. Res. 2018; 8(4): 243-248. http://doi.org/10.5958/2231-5691.2018.00042.4.
76.    Ahmed F, Dwivedi S, Shaalan NM, Kumar S, Arshi N, Alshoaibi A, Husain FM. Development of Selenium Nanoparticle Based Agriculture Sensor for Heavy Metal Toxicity Detection. Agriculture. 2020; 10(12): 610. https://doi.org/10.3390/agriculture10120610.
77.    Lucy M. Ombaka, James D. McGettrick, Ekemena O. Oseghe, Osama Al-Madanat, Felix Rieck genannt Best, Titus A.M. Msagati, Matthew L. Davies, Thomas Bredow, Detlef W. Bahnemann,Photocatalytic H2 production and degradation of aqueous 2-chlorophenol over B/N-graphene-coated Cu0/TiO2: A DFT, experimental and mechanistic investigation,Journal of Environmental Management. 2022; 311(1): 114822. https://doi.org/10.1016/j.jenvman.2022.114822.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available