Author(s):
Dhanya B. Sen, Krunal Baldha, Ashim Kumar Sen, Rajesh A. Maheshwari, Aarti S. Zanwar, Rahul Raval, Manojkumar K. Munde
Email(s):
dhanyab1983@gmail.com
DOI:
10.52711/0974-360X.2025.00675
Address:
Dhanya B. Sen1*, Krunal Baldha1, Ashim Kumar Sen1, Rajesh A. Maheshwari1, Aarti S. Zanwar1, Rahul Raval2, Manojkumar K. Munde3
1Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara-391760, Gujarat, India.
2VBT’s Institute of Management Studies, CU Shah University, Wadhwan City, Surendranagar-363030, Gujarat, India.
3SBNM College of Pharmacy, Achloli, Mahad, Raigad-402305, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 10,
Year - 2025
ABSTRACT:
A tablet with a fixed dose of 0.5 mg lobeglitazone sulfate has been proven to effectively improve glycemic management in individuals with diabetes mellitus. The objective of this study was to develop and validate an efficient thin-layer chromatographic method for accurately measuring the amount of lobeglitazone sulfate in tablet form. The objective is to develop and validate a method, following the ICH recommendations, for precise quantification of lobeglitazone sulfate in tablet formulation. The analysis employed aluminium plates coated with silica gel 60F254 for high-performance thin-layer chromatography. The solvent system used was a mixture of toluene: ammonium acetate: acetonitrile and triethyl amine in a ratio of 4:2.5:1.5:0.2 v/v/v/v. The resulting chromatogram was then scanned at a wavelength of 248 nm using densitometry. The approach demonstrated a linear relationship in the range of 100-1500 ng/band for lobeglitazone sulfate, with correlation coefficient of 0.9991. Remarkable sensitivity was noted, with detection limits of 17.31 ng/band and quantification limits of 52.46 ng/band for lobeglitazone sulfate. The approach exhibited high precision, with a relative standard deviation of peak area below 2%. Additionally, it demonstrated accuracy, with a recovery rate ranging between 98% and 101%. The proposed methodology is suitable for measuring the specified drug in tablet formulations, making it useful for regular quality control evaluations in laboratories.
Cite this article:
Dhanya B. Sen, Krunal Baldha, Ashim Kumar Sen, Rajesh A. Maheshwari, Aarti S. Zanwar, Rahul Raval, Manojkumar K. Munde. A Robust High-performance Thin-layer Chromatographic Method for the precise quantification of Lobeglitazone sulfate in Tablet Formulation. Research Journal of Pharmacy and Technology. 2025;18(10):4695-3. doi: 10.52711/0974-360X.2025.00675
Cite(Electronic):
Dhanya B. Sen, Krunal Baldha, Ashim Kumar Sen, Rajesh A. Maheshwari, Aarti S. Zanwar, Rahul Raval, Manojkumar K. Munde. A Robust High-performance Thin-layer Chromatographic Method for the precise quantification of Lobeglitazone sulfate in Tablet Formulation. Research Journal of Pharmacy and Technology. 2025;18(10):4695-3. doi: 10.52711/0974-360X.2025.00675 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-10-14
REFERENCES:
1. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003; 46: 3-19. https://doi.org/10.1007/s00125-002-1009-0.
2. Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications. Current Diabetes Reports. 2019; 19(12): 151. https://doi.org/10.1007/s11892-019-1270-y.
3. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). Journal of Biological Chemistry. 1995; 270(22): 12953-6. https://doi.org/10.1074/jbc.270.22.12953.
4. Bae J, Park T, Kim H, et al. Lobeglitazone: a novel thiazolidinedione for the management of type 2 diabetes mellitus. Diabetes and Metabolism Journal. 2021; 45(3): 326-36. https://doi.org/ 10.4093/dmj.2020.0272
5. https://pubchem.ncbi.nlm.nih.gov/compound/Lobeglitazone-sulfate
6. https://www.financialexpress.com/healthcare/pharma-healthcare/glenmark-becomes-first-to-launch-lobeglitazone-for-uncontrolled-type-2-diabetes-in-india/2701762/
7. https://www.1mg.com/drugs/lobg-tablet-804415?wpsrc=Google+Organic+Search
8. Gulhane PD, Jawarkar SG. Bioanalytical method development and validation for determination of lobeglitazone in human plasma. International Research Journal of Modernization in Engineering Technology and Science. 2023; 05(05): 8103-16. https://www.doi.org/10.56726/IRJMETS40687.
9. Kim B, Shin HS, Kim JR, et al. Quantitative and qualitative analysis of CKD-501, lobeglitazone, in human plasma and urine using LC–MS/MS and its application to a pharmacokinetic study. Chromatographia. 2012; 75: 671-7. https://doi.org/10.1007/s10337-012-2238-0.
10. Lee JH, Woo YA, Hwang IC, et al. Quantification of CKD-501, lobeglitazone, in rat plasma using a liquid-chromatography/tandem mass spectrometry method and its applications to pharmacokinetic studies. Journal of Pharmaceutical and Biomedical Analysis. 2009; Dec 5; 50(5): 872-7. https://doi.org/10.1016/j.jpba.2009.06.003.
11. International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human Use. Validation of analytical procedures: text and methodology Q2(R1). Geneva: ICH; 2005. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf
12. Srivastava MM. An overview of HPTLC: A modern analytical technique with excellent potential for automation, optimization, hyphenation, and multidimensional applications. In: Srivastava, M. (eds) High-Performance Thin-Layer Chromatography (HPTLC). Springer, Berlin, Heidelberg. 2011; 3-24. https://doi.org/10.1007/978-3-642-14025-9_1.
13. Attimarad M, Ahmed KK, Aldhubaib BE, et al. High‐ performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharmaceutical Methods. 2011; 2(2): 71-5. https://doi.org/10.4103/2229-4708.84436.
14. Sen AK, Khatariya SB, Sen DB, et al. Development and validation of high-performance thin layer chromatographic method for concurrent estimation of dapagliflozin and vildagliptin in combined tablet. Separation Science Plus. 2024; 7(1): 2300132. https://doi.org/10.1002/sscp.202300132.
15. Sen AK, Bhimani N, Sen DB, et al. Densitometric simultaneous assessment of teneligliptin hydrobromide and pioglitazone hydrochloride in combined tablet. Separation Science Plus. 2023; 7(1): 2300139. https://doi.org/10.1002/sscp.202300139.
16. Akabari AH, Surati J, Patel S, et al. Development and validation of high‐performance thin layer chromatographic method for simultaneous quantitation of novel combination perindopril erbumine and moxonidine hydrochloride. Separation Science Plus. 2023; 6(9): 2300051. https://doi.org/10.1002/sscp.202300051.
17. Sen AK, Sarkar T, Sen DB, et al. Quantitative determination of lobeglitazone sulfate and glimepiride in combined tablet by robust high‐performance thin layer chromatographic method. Separation Science Plus. 2024; 7(7): 2400059. https://doi.org/10.1002/sscp.202400059.
18. Sen DB, Sen AK, Zanwar AS, et al. Novel UV Spectrophotometric approaches for the concurrent determination of Teneligliptin and Metformin in Tablet Formulation. Research Journal of Pharmacy and Technology. 2024; 17(3): 1119-27. https://doi.org/10.52711/0974-360X.2024.00175.
19. Zanwar AS, Nahata AN, Sen AK, et al. Comprehensive Quantification of Miconazole Nitrate, Mupirocin, and Mometasone Furoate: a Dual Analysis via HPLC and HPTLC with Comparative Evaluation Against Greenness Parameters. Chromatographia. 2024. https://doi.org/10.1007/s10337-024-04338-8.
20. Koradia S, Patel M, Sen AK, et al. Analytical quality by design‐based thin‐layer chromatography method development and validation for assay and content uniformity testing of the anti‐neoplastic drug Axitinib in tablet formulation. Separation Science Plus. 2024; 7(3): 2300176. https://doi.org/10.1002/sscp.202300176.
21. Munde MK, Kulkarni NS, Sen AK, et al. A novel validated stability indicating analytical method for simultaneous quantification of metformin hydrochloride and empagliflozin in bulk and marketed formulation by HPTLC using box-wilson experimental design approach. Indian Journal of Pharmaceutical Education and Research. 2020; 54(3s): s644-56. https://doi.org/10.5530/ijper.54.3s.164.
22. Sen AK, Pandey H, Maheshwari RA, et al. Novel UV spectroscopic methods for simultaneous assessment of empagliflozin, linagliptin and metformin in ternary mixture. Indian Journal of Pharmaceutical Education and Research. 2022; 56(4s): s669-81. https://doi.org/10.5530/ijper.56.4s.213.
23. Zanwar AS, Sen DB, Maheshwari RA, et al. Simultaneous analysis of mometasone furoate, miconazole nitrate, and nadifloxacin in cream formulation by HPTLC. Journal of Applied Pharmaceutical Science. 2020; 10(7): 108-15. https://doi.org/10.7324/JAPS.2020.10714.
24. Bhende SD, Varanasi MB, Abbulu K. A sensitive HPTLC method for the estimation of glibenclamide, rosiglitazone maleate and metformin hydrochloride from a multicomponent dosage form. Journal of Chromatographic Science. 2020; 58(5): 418-26. https://doi.org/10.1093/chromsci/bmz124.
25. Abdelrahman AE, Maher HM, Alzoman NZ. HPTLC method for the determination of metformin hydrochloride, saxagliptin hydrochloride, and dapagliflozin in pharmaceuticals. Current Analytical Chemistry. 2020; 16(5): 609-19. https://doi.org/10.2174/1573407215666190131123029.
26. El-Kimary EI, Hamdy DA, Mourad SS, et al. HPTLC determination of three gliptins in binary mixtures with metformin. Journal of Chromatographic Science. 2016; 54(1): 79-87. https://doi.org/10.1093/chromsci/bmv106.
27. Modi DK, Parejiya PB, Patel BH. A simple and sensitive HPTLC method for simultaneous determination of metformin hydrochloride and sitagliptin phosphate in tablet dosage form. Journal of Chemistry. 2013; 139561. https://doi.org/10.1155/2013/139561.
28. Modi DK, Patel BH. Simultaneous determination of metformin hydrochloride and glipizide in tablet formulation by HPTLC. Journal of Liquid Chromatography and Related Technologies. 2012; 35(1): 28-39. https://doi.org/10.1080/10826076.2011.593227.
29. Thomas AB, Patil SD, Nanda RK, et al. Stability-indicating HPTLC method for simultaneous determination of nateglinide and metformin hydrochloride in pharmaceutical dosage form. Saudi Pharmaceutical Journal. 2011; 19(4): 221-31. https://doi.org/10.1016/j.jsps.2011.06.005.
30. Ghassempour A, Ahmadi M, Ebrahimi SN, et al. Simultaneous determination of metformin and glyburide in tablets by HPTLC. Chromatographia. 2006; 64: 101-4. https://doi.org/10.1365/s10337-006-0827-5.
31. Prajapati P, Radadiya K, Shah S. Principal component analysis and DoE-based AQbD approach to multipurpose HPTLC method for synchronous estimation of multiple FDCs of metformin HCl, repaglinide, glibenclamide and pioglitazone HCl. Journal Chromatographic Science. 2024; 62(2): 108-19. https://doi.org/10.1093/chromsci/bmac055.
32. Surati J, Kalesh K, Akbari A, et al. Validated thin-layer chromatographic–densitometric and high-performance liquid chromatographic methods for the simultaneous determination of alfuzosin and tadalafil in pharmaceutical products. Journal of Planar Chromatography: Modern TLC. 2023; 36(2-3): 137-46. https://doi.org/10.1007/s00764-023-00240-5.
33. Abou El-Alamin MM, Toubar SS, Mohamed DA, et al. Development of Green HPTLC method for simultaneous determination of a promising combination Tamsulosin and Mirabegron: stability-indicating assay was examined. BMC Chemistry. 2023; 17(1): 130. https://doi.org/10.1186/s13065-023-01043-9.
34. Prajapati P, Tailor P, Shahi A, et al. Application of chemometry and design of experiments to green HPTLC method for synchronous estimation of multiple FDCs of cilnidipine. Journal of AOAC International. 2022; 105(5): 1491-501. https://doi.org/10.1093/jaoacint/qsac056.
35. Kumssa L, Layloff T, Hymete A, et al. High performance thin layer chromatography (HPTLC) method development and validation for determination of doxycycline hyclate in capsule and tablet formulations. Acta Chromatographia. 2022; 34(3): 287-95. https://doi.org/10.1556/1326.2021.00926.
36. Shah DA, Patel PA, Chhalotiya U. Thin-layer chromatographic‒densitometric method of analysis for the estimation of montelukast and bilastine in combination. Journal of Planar Chromatography: Modern TLC. 2021; 34(4): 289-95. https://doi.org/10.1007/s00764-021-00120-w.
37. Sen AK, Ghodasara S, Sen DB, et al. Evaluation of remogliflozin, vildagliptin,and metformin in tablet dosage form using modern and costeffective UV spectroscopic methods. Journal of Applied Pharmaceutical Sciences. 2023; 13(9). http://doi.org/10.7324/JAPS.2023.136050.
38. Sen AK, Darji P, Sen DB, et al. Different Innovative UV-Spectroscopic Approaches for SimultaneousAssessment of Celecoxib and Tramadol Hydrochloride in Binary Mixture. Indian Journal of Pharmaceutical Education and Research. 2023; 57(3s): s787-s797. http://doi.org/10.5530/ijper.57.3s.89.
39. Sampathkumar Y, Mahadevan SG, Jayaraman R. Physicochemical, Phytochemical screening and HPTLC Fingerprinting Analysis of Ethanolic extract of Mimusops elengi Linn. leaves. Research Journal of Pharmacy and Technology. 2020; 13(5): 2091-5. http://doi.org/10.5958/0974-360X.2020.00376.5.
40. Meena AK, Rekha P, Poorna V, et al. Standardisation and HPTLC finger print profile of poly herbal churna, An Ayurvedic Formulation. Research Journal of Pharmacy and Technology. 2020; 13(3): 1361-7. http://doi.org/ 10.5958/0974-360X.2020.00251.6 .
41. Sharma DB, Aphale P, Gandhi V, et al. Qualitative analysis of calendula officinalis homeopathic mother tincture with the help of high-performance thin layer chromatography. Research Journal of Pharmacy and Technology. 2020; 13(3): 1113-6. http://doi.org/10.5958/0974-360X.2020.00204.8.
42. Sutar SV, Yeligar VC. Degradation Kinetic Study of Melatonin in Alkaline and Acidic Medium by Validated Stability Indicating HPTLC Method. Research Journal of Pharmacy and Technology. 2020; 13(2): 523-8. http://doi.org/10.5958/0974-360X.2020.00099.2.
43. Bokov DO, Kulaeva IR, Potanina OG, et al. Carbohydrates determination in the Snowdrops (Galanthus L.) herbal pharmaceutical substances by TLC and UV-Spectrophotometry. Research Journal of Pharmacy and Technology. 2020; 13(1): 243-9. http://doi.org/10.5958/0974-360X.2020.00049.9.
44. Daharwal SJ, Shrivastava S. Preliminary Phytochemical Screening and HPTLC Fingerprinting of Extracts of Thuja occidentalis. Research Journal of Pharmacy and Technology. 2019; 12(10): 4782-4. http://doi.org/10.5958/0974-360X.2019.00825.4.
45. Tamilselvi N, Arivukkarasu R, Suresh P, et al. Method Development and Validation of Ezogabine by using HPTLC Method. Research Journal of Pharmacy and Technology. 2019; 12(12): 5694-8. https://doi.org/10.5958/0974-360X.2019.00985.5.
46. Premakumari KB, Mahesh AR, Murugan V, et al. Simultaneous Estimation of Paracetamol and Zaltoprofen in Pharmaceutical Dosage Form by HPTLC. Research Journal of Pharmacy and Technology. 2019; 12(5): 2075-8. https://doi.org/10.5958/0974-360X.2019.00343.3.
47. Tamilselvi N, Arivukkarasu R, Sasikala R, et al. Development and Validation of HPTLC method for the Determination of Efavirenz in Tablet Dosage Form. Research Journal of Pharmacy and Technology. 2018; 11(3): 885-8. https://doi.org/10.5958/0974-360X.2018.00169.5.
48. Raj A, Vinnarasi J, Venkataraman R, et al. HPTLC Fingerprinting Analysis of Tannin Profile on Canthium coromandelicum and Flueggea leucopyrus willd. Research Journal of Pharmacy and Technology. 2018; 11(12): 5355-8. https://doi.org/10.5958/0974-360X.2018.00975.7.