Author(s): Annise Proboningrat, Anggun Khoirun Nikmah, Agung Budianto Achmad, Rinza Rahmawati Samsudin, Aswin Rafif Khairullah

Email(s): annise.p@fkh.unair.ac.id

DOI: 10.52711/0974-360X.2025.00710   

Address: Annise Proboningrat1, Anggun Khoirun Nikmah2, Agung Budianto Achmad3, Rinza Rahmawati Samsudin4, Aswin Rafif Khairullah5
1Division of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, 60115, Surabaya, Indonesia.
2Aquaculture Study Program, Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia.
3Department of Health, Faculty of Vocational Studies, Universitas Airlangga, 60286, Surabaya, Indonesia.
4Department of Chemistry, Faculty of Health Sciences, Muhammadiyah University of Surabaya, 60113, Surabaya, Indonesia.
5Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), 16911, Bogor, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 10,     Year - 2025


ABSTRACT:
Industrial pollutants, especially cadmium, pose severe risks to freshwater systems and human health, necessitating effective removal strategies. Chitosan nanoparticles, derived from crustacean shells, have emerged as a promising method for detoxifying contaminated water. This study aims to demonstrate the effectiveness of nanochitosan derived from black tiger shrimp shells in reducing Cd ions from water. Treatments were five levels of dose (1, 1.5, 2, 2.5, and 3g/L), four levels of pH (7, 7.5, 8, and 8.5), four levels of temperature (25°C, 40°C, 55°C, and 70°C) and five replicants for each sample. The total number of samples was 65 and each sample container filled with 50mL of 50mg/L cd solution. The research began by synthesizing nanochitosan using the ionic gelation method. The size and morphology of nanochitosan were determined using scanning electron microscopy. The atomic absorption spectrophotometer was used to measure the Cd ion adsorption. SEM examination showed that nanochitosan was successfully formed with a size of 294.76±4.52nm and morphology in the form of spheres, irregulars, and clumps. The result showed that nanochitosan from black tiger shrimp shells could adsorb cadmium ions up to 92.87% ±0.01 with an optimal dose of 3g/L. pH 7 is the optimal pH with an adsorption effectiveness value of 93.43% ±0.02. The temperature of 25°C is the optimal temperature with an adsorption effectiveness value of 92.53% ±0.05. Therefore, this study demonstrated that nanochitosan from black tiger shrimp shells is suitable for use as an adsorbent for Cd heavy metal ions.


Cite this article:
Annise Proboningrat, Anggun Khoirun Nikmah, Agung Budianto Achmad, Rinza Rahmawati Samsudin, Aswin Rafif Khairullah. Black Tiger Shrimp (Penaeus monodon) derived Chitosan Nanoparticle as Cadmium Adsorbent from Fresh Water. Research Journal of Pharmacy and Technology. 2025;18(10):4821-8. doi: 10.52711/0974-360X.2025.00710

Cite(Electronic):
Annise Proboningrat, Anggun Khoirun Nikmah, Agung Budianto Achmad, Rinza Rahmawati Samsudin, Aswin Rafif Khairullah. Black Tiger Shrimp (Penaeus monodon) derived Chitosan Nanoparticle as Cadmium Adsorbent from Fresh Water. Research Journal of Pharmacy and Technology. 2025;18(10):4821-8. doi: 10.52711/0974-360X.2025.00710   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-10-49


REFERENCES: 
1.    KKP. Statistik Ekspor Hasil Perikanan Tahun. 2017-2021. Direktorat Jenderal Penguatan Daya Saing Produk Kelautan dan Perikanan. 2022. KKP, Jakarta.
2.    Minh, N. P. Utilization of black tiger shrimp (Penaeus monodon) head meat for seasoning production. International Journal of Multidisciplinary Research and Development. 2014; 1(4): 71-73.
3.    Harlyan, I. L., dan Syarifah, H. J. S. Konsentrasi Logam Berat Pb, Cu, dan Zn pada Air dan Sedimen Permukaan Ekosistem Mangrove di Muara Sungai Porong, Sidoarjo, Jawa Timur. Jurnal Perikanan dan Kelautan. 2015; 20(1).
4.    Shuvriah, L. B., Suhariyadi, Wulandari, D. D. Analisis Kadar Logam Berat Kadmium (Cd) Dan Timbal (Pb) Pada Ikan Bandeng (Chanos chanos) Tambak Di Desa Kupang, Jabon Sidoarjo. Jurnal Esgasterio. 2019; 6(1): 9-16. 
5.    Babakhani, A., and Sartaj, M. Removal of Cadmium (II) from aqueous solution using tripolyphosphate cross-linked chitosan. Journal of Environmental Chemical Engineering. 2020; 8(4): 103842.
6.    Boddu, S., Alugunulla, V. N., Miriyala, V., Koti, B., and Chintala, P. Removal of Cd(II) from Synthetic Medium on to Gulmohar Fruit Shell: Characterization, Equilibrium and Kinetic studies. Research Journal of Pharmacy and Technology. 2021; 14(7): 3763-8. doi: 10.52711/0974-360X.2021.00651
7.    Nahvi, A., Hashemi, S. A., and Fallahchai, M. M. Studying the ability to absorb heavymetal of cadmiumon the amount of sugar and chlorophyll using seedlings of berry specie (Morus alba) in pollution area. Shengtai Xuebao/ Acta Ecologica Sinica. 2017; 37(1): 35–37.
8.    Ferdian, F., Hindarti, D., and Permana, R. Cadmium effects on growth and photosynthetic pigment content of Chaetoceros gracilis. World Scientific News. 2020; 145: 245-255.
9.    Liu, Y., Chen, Q., Li, Y., Bi, L., Jin, L., and Peng, R. Toxic effects of cadmium on fish. Toxics. 2022; 10(10): 622.
10.    Ashar, Y. K., Naria, E., Dharma, S. Analisis Kandungan Kadmium (Cd) Dalam Udang Windu (Penaeus Monodon) Yang Berada Di Tambak Sekitar Tempat Pembuangan Akhir (Tpa) Sampah Kelurahan Terjun Kota Medan Tahun 2014. Lingkungan dan Keselamatan Kerja. 2014; 3(3).
11.    Alyasi H., Mackey H.R., McKay G. Removal of cadmium from waters by adsorption using nanochitosan. Energy Environ. 2019; 31: 517–534. doi: 10.1177/0958305X19876191.
12.    Zhang, H., and Reynolds, M. Cadmium exposure in living organisms: A short review. Science of The Total Environment. 2019; 678: 761-767. doi:10.1016/j.scitotenv.2019.04.395.
13.    Asih, A. Y. P. Monograf Kandungan Logam Berat pada Udang sebagai Pemicu Timbulnya Penyakit Kanker. Unusa Press, Surabaya. 2020.
14.    Popuri, A. K., and Guttikonda, P. Use of Agricultural Waste (Fly Ash) for Removal of Nickel Ions from Aqueous Solutions. Research J. Pharm. and Tech. 8(12): 1665-1668. doi: 10.5958/0974-360X.2015.00300.5
15.    Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., and Shin, K. H. Microalgae–a promising tool for heavy metal remediation. Ecotoxicology and environmental safety. 2015; 113: 329-352.
16.    Teh, C. Y., Budiman, P. M., Shak, K. P. Y., and Wu, T. Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial and Engineering Chemistry Research. 2016; 55(16): 4363-4389.
17.    Jawad, S. K., Ridha, R. K. Cloud Point Extraction Coupled with Liquid Ion Exchange for Separation and Determination Mn (VII) in real samples. Research J. Pharm. and Tech. 2019; 12(10): 4861-4866. doi: 10.5958/0974-360X.2019.00842.4
18.    Jamshidifard, S., Koushkbaghi, S., Hosseini, S., Rezaei, S., Karamipour, A., and Irani, M. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb (II), Cd (II) and Cr (VI) ions from aqueous solutions. Journal of hazardous materials. 2019; 368: 10-20.
19.    Jin, W., Fu, Y., Hu, M., Wang, S., and Liu, Z. Highly efficient SnS-decorated Bi2O3 nanosheets for simultaneous electrochemical detection and removal of Cd (II) and Pb (II). Journal of Electroanalytical Chemistry. 2020; 856: 113744.
20.    Xiao, Y., Tan, S., Wang, D., Wu, J., Jia, T., Liu, Q., Qi, Y., Qi, X., He, P., and Zhou, M. CeO2/BiOIO3 heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal. Applied Surface Science. 2020; 530: 147116.
21.    Kamel, B. A. F., Mahdi, A. S., Ahmed, A. A., Ali, D. A., and Dawood, K. M. Adsorption Isotherms, Kinetics and the Rmodynamic studies of Vat Brown 16 Dye using ZnO and Nano-ZnO Particles. Research J. Pharm. and Tech 2018; 11(9): 3998-4002. doi: 10.5958/0974-360X.2018.00735.7
22.    Hardani, P. T., Sugijanto, N. E. N., and Kartosentono, S. Heavy Metals Bioremediation by Shells Dust and Chitosan Derived from Belamya javanica Snail, an Eco-friendly Biosorbent. Research J. Pharm. and Tech 2021; 14(3): 1555-1560. doi: 10.5958/0974-360X.2021.00274.2
23.    Qasem, N. A., Mohammed, R. H., and Lawal, D. U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water. 2021; 4(1): 1-15.
24.    Long, X., Chen, H., Huang, T., Zhang, Y., Lu, Y., Tan, J., and Chen, R. Removal of Cd (II) from micro-polluted water by magnetic core-shell Fe3O4@ Prussian blue. Molecules. 2021; 26(9): 2497.
25.    Liang J., Liu M., and Zhang Y. Technology, Cd (II) removal on surface-modified activated carbon: Equilibrium, kinetics and mechanism. Water Sci. Technol. 2016; 74: 1800–1808. doi: 10.2166/wst.2016.338.
26.    Li Y., Pei G., Qiao X., Zhu Y., and Li H. Remediation of cadmium contaminated water and soil using vinegar residue biochar. Environ. Sci. Pollut. Res. 2018; 25: 15754–15764. doi: 10.1007/s11356-018-1762-3. 
27.    Khan, M. I., Almesfer, M. K., Danish, M., Ali I. H., Shoukry, H., Patel, R., Gardy, J., Nizami, A. S., Rehan, M. Potential of Saudi natural clay as an effective adsorbent in heavy metals removal from wastewater. Desalin. Water Treat. 2019; 158: 140–151. doi: 10.5004/dwt.2019.24270
28.    nanochitosanChang J.J., Zhang J., Tang B.Q., Wang Q., Liu N.N., Xue Q. New insight into the removal of Cd (II) from aqueous solution by diatomite. Environ. Sci. Pollut. Res. 2020; 27: 9882–9890. doi: 10.1007/s11356-020-07620-y.
29.    Joseph, L., Saha, M., Kim, S., Jun, B. M., Heo, J., Park, C. M., Jang, M., Flora, J. R. V., and Yoon, Y. Removal of Cu2+, Cd2+, and Pb2+ from aqueous solution by fabricated MIL-100 (Fe) and MIL-101 (Cr): Experimental and molecular modeling study. Journal of Environmental Chemical Engineering. 2021; 9(6): 106663.
30.    Alyasi, H., Mackey, H. R., Loganathan, K., and McKay, G. Adsorbent minimisation in a two-stage batch adsorber for cadmium removal. Journal of Industrial and Engineering Chemistry. 2020; 81: 153-160.
31.    Zhang, Y., Zhao, M., Cheng, Q., Wang, C., Li, H., Han, X., Fan, Z., Su, G., Pan, D., and Li, Z. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: A review. Chemosphere. 2021; 279: 130927.
32.    Fan, H. L., Zhou, S. F., Jiao, W. Z., Qi, G. S., and Liu, Y. Z. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydrate polymers. 2017; 174: 1192-1200.
33.    Dhamane, S. P., and Jagdale, S. C. Development of Rifampicin loaded Chitosan nanoparticles by 32 full Factorial design. Research J. Pharm. and Tech. 2020; 13(6): 2545-2550. doi: 10.5958/0974-360X.2020.00453.9
34.    Rezkita, F., Wibawa, K. G. P., and Nugraha, A. P. Curcumin loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review. Research J. Pharm. and Tech. 2020; 13(2): 1039-1042. doi: 10.5958/0974-360X.2020.00191.2
35.    Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., and Huang, X. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials. 2019; 9:1–39. 
36.    Zia, Q., Tabassum, M., Gong, H., and Li, J. A review on chitosan for the removal of heavy metals ions. Journal of Fiber Bioengineering and Informatics. 2019; 12(3): 103-128.
37.    Jeevitha. E, Sathesh Kumar Sukumaran. Development and Evaluation of Naringenin Loaded Chitosan Nanoparticles for Improved Treatment of Neurotoxicity. Research J. Pharm. and Tech. 2020; 13(1): 129-134. doi: 10.5958/0974-360X.2020.00026.8
38.    Divya, L., Raju, M. B., and Raut, S. Y. Chitosan-Based Micro and Nanoparticles: A Promising System for Drug Delivery. Research J. Pharm. and Tech. 2014; 7(12): 1463-1471.
39.    Tanasale, M.F.J.D.P., Telussa, I.,Sekewael, S.J., Kakerissa, L. Extraction and Characterization of Chitosan from Windu Shrimp Shell (Penaeus monodon) and Depolymerization Chitosan Process with Hydrogen Peroxide Based on Heating Temperature Variation. Ind. J. Chem. Res. 2016; 3(2): 308-316.
40.    Nadia, L.M.H., Suptijah, P., Ibrahim, B. Production and Characterization Chitosan Nano from Black Tiger Shrimpwith Ionic Gelation Methods. Journal of King Saud University. 2018; 17(2): 119–126.
41.    Doan, C.T., Tran, T.N., Nguyen, V.B., Vo, T.P.K., Nguyen, A.D., and Wang, S.L. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. International Journal Biology Macromolecule. 2019; 131(2): 706–715.
42.    Putri, S. E., Ahmad, A., Raya, I., Tjahjanto, R. T., and Irfandi, R. Synthesis and antibacterial activity of chitosan nanoparticles from black tiger shrimp shell (Penaeus monodon). Egyptian Journal of Chemistry. 2023; 66(8): 129-139.
43.    Ali, M. E. A., Aboelfadl, M. M. S., Selim, A. M., Khalil, H. F., and Elkady, G. M. Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe (II) and Mn (II) from aqueous phases. Separation Science and Technology. 2018; 53(18): 2870-2881.
44.    Chandra, D., Molla, M. T. H., Bashar, M. A., Islam, M. S., and Ahsan, M. S. Chitosan-based nano-sorbents: synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater. Scientific Reports. 2023; 13(1): 6050.
45.    Varghese, L. R., and Das, N. Application of gum based and clay based CuO/chitosan nanobiocomposite beads for the removal of nickel(II) from aqueous environments: Equilibrium, kinetic, thermodynamic and ex-situ studies. Research J. Pharm. and Tech. 2017; 10(5): 1347-1359. doi: 10.5958/0974-360X.2017.00239.6
46.    Abdelnaby, A., Abdelaleem, N. M., Elshewy, E., Mansour, A. H., and Ibrahim, S. S. Application of bentonite clay, date pit, and chitosan nanoparticles as promising adsorbents to sequester toxic lead and cadmium from milk. Biological Trace Element Research. 2023; 201(5): 2650-2664.
47.    Yaman, N. Enkapsulasi Asam Galat dalam Nanopartikel Kitosan sebagai Antibakteri. In SNSE III 2016. 2016.
48.    Proboningrat, A. Potensi Antikanker Nanopartikel Piperin Berbasis Kitosan dengan Ligan Folat Pada Sel HeLa. Disertasi, Universitas Airlangga. 2021.
49.    Carriello, G.M., Manassés Pegoraro, G. e Batista dos Santos Junior, J. The Historical Development of the Words “Dissociation” and “Ionization” in Chemistry. Revista Debates em Ensino de Química. 2023; 9(4): 274–287.
50.    Henry, F., Marchal, P., Bouillard, J., Vignes, A., Dufaud, O., and Perrin, L. The effect of agglomeration on the emission of particles from nanopowders flow. In 14. International Symposium on Loss Prevention and Safety Promotion in the Process Industry. 2014; 31: 811-816. AIDIC. Milano.
51.    Masarudin, M.J., Cutts, S.M., Evison, B.J., Phillips, D.R., Pigram, P.J. Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnol. Sci. Appl. 2015; 8: 67–80.
52.    Ilmiyah, Z., and Rohmah, J. Characterization of Chitosan Nanoparticles from Milkfish Scales as an Alternative Preservatives of Fresh Pangas Catfish (Pangasius hypopthalmus). Medicra (Journal of Medical Laboratory Science/Technology). 2020; 3(1): 12-20.
53.    Mehraie, A., Khanzadi, S., Hashemi, M., and Azizzadeh, M. New coating containing chitosan and Hyssopus officinalis essential oil (emulsion and nanoemulsion) to protect shrimp (Litopenaeus vannamei) against chemical, microbial and sensory changes. Food Chemistry: X. 2023; 19: 100801.
54.    Cadogan, E. I., Lee, C.-H., Popuri, S. R., and Lin, H.-Y. Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration and Biodegradation. 2014; 95: 232–240. doi:10.1016/j.ibiod.2014.06.003 
55.    Khan, I., Saeed, K., and Khan, I. Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry. 2019; 12(7): 908-931. 
56.    El-Naggar, N. E. A., Shiha, A. M., Mahrous, H., and Mohammed, A. A. Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacter baumannii. Scientific Reports. 2022; 12(1): 19869.
57.    Samudra, A. G., Ramadhani, N., Pratiwi, R., Putra, A. H., Nugroho, B. H., dan Sani K, F. Pengaruh Variasi Konsentrasi Natrium Tripolifosfat Pada Nanoemulsi Metode Gelasi Ionik Ekstrak Etanol Sargassum sp. Jurnal Ilmiah Kefarmasian Medical Sains. 2022; 7(2): 335-341.
58.    Fadli, A., Drastinawati, D., Alexander, O., Huda, F. Pengaruh rasio massa kitin/naoh dan waktu reaksi terhadap karakteristik kitosan yang disintesis dari limbah industri udang kering. Jurnal sains materi Indonesia. 2018; 18(2): 61.
59.    Fernando, L. A. T., Poblete, M. R. S., Ongkiko, A. G. M., and Diaz, L. J. L. Chitin extraction and synthesis of chitin-based polymer films from Philippine blue swimming crab (Portunus pelagicus) shells. Procedia Chemistry. 2016; 19: 462-468.
60.    Fan, W., Yan, W., Xu, Z., and Ni, H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces. 2012; 90(1): 21–27.
61.    Sreekumar, S., Goycoolea, F. M., Moerschbacher, B. M., and Rivera-Rodriguez, G. R. Parameters influencing the size of chitosan-TPP nano-and microparticles. Scientific reports. 2018; Mar 16; 8(1): 4695.
62.    Warsito, M. G., and Agustiani, F. A review on factors affecting chitosan nanoparticles formation. IOP Conf. Ser.: Mater. Sci. Eng. 2021; 1011 012027.
63.    Thandapani, G., Prasad, S., Sudha, P. N., and Sukumaran, A. Size optimization and in vitro biocompatibility studies of chitosan nanoparticles. International Journal of Biological Macromolecules. 2017; Nov; 104: 1794-1806.
64.    Salah, T. A., Mohammad, A. M., Hassan, M. A., and El-Anadouli, B. E. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers. 2014; 45(4): 1571-1577.  doi:10.1016/j.jtice.2013.10.008.
65.    Saputra, M. R., Andrio, D., dan Darmayanti, L. Karakterisasi Dan Analisis Pengolahan Greywater Menggunakan Karbon Aktif. Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains. 2020; 7: 1-5.
66.    Hussain, M. S., Musharraf, S. G., Bhanger, M. I., and Malik, M. I. Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead (II), copper (II), and cadmium (II) ions. International Journal of Biological Macromolecules. 2020; 147: 643-652.
67.    Wijaya, V. C., and Ulfin, I. Pengaruh ph pada adsorbsi ion cd2+ dalam larutan menggunakan karbon aktif dari biji trembesi (Samanea saman). Jurnal Sains Dan Seni ITS. 2015; 4(2): 86-89.
68.    Shaker, M. A. Thermodynamics and kinetics of bivalent cadmium biosorption onto nanoparticles of chitosan-based biopolymers. Journal of the Taiwan Institute of Chemical Engineers. 2015; 47: 79-90.
69.    Hendriyani, W. Literature Review: Application of Chitosan Nanoparticles as Cadmium (Cd) Heavy Metal Adsorbents. Faculty of Fisheries and Marine. Airlangga University. 2021. pp: 68.
70.    Seyedmohammadi, J., Motavassel, M., Maddahi, M. H., and Nikmanesh, S. Application of  nano chitosan and chitosan particles for adsorption of Zn (II) ions pollutant from aqueous solution to protect environment. Modeling Earth Systems and Environment. 2016; 2: 1-12.
71.    Dev, V. V., Nair, K. K., Baburaj, G., and Krishnan, K. A. Pushing the boundaries of heavy metal adsorption: A commentary on strategies to improve adsorption efficiency and modulate process mechanisms. Colloid and Interface Science Communications. 2022; 49, 100626.
72.    Ashraf, A., Dutta, J., Farooq, A., Rafatullah, M., Pal, K., and Kyzas, G. Z. Chitosan-based materials for heavy metal adsorption: Recent advancements, challenges and limitations. Journal of Molecular Structure. 2024; 1309: 138225.
73.    Olivera, S., Muralidhara, H. B., Venkatesh, K., Guna, V. K., Gopalakrishna, K., and Kumar K., Y. Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: A review. Carbohydrate Polymers. 2016; 153: 600–618.
74.    Benettayeb, A., Seihoub, F. Z., Pal, P., Ghosh, S., Usman, M., Chia, C. H., and Sillanpää, M. Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants. Nanomaterials. 2023; 13(3): 447.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available