ABSTRACT:
The taste, nutritional value, balanced biochemical makeup, and other health-promoting qualities of mung bean (Vigna radiata (L.) Wilczek) sprouts have made them popular worldwide. The purpose of this research is to determine the content and benefits of the compounds found in bean sprouts for medical treatment, and their benefits for human growth hormones. This research is a Literature review. The search strategy begins by entering keywords: “Mung Bean Sprouts, Human Growth Hormone (HGH), Health benefits, Global Medicine. This research was taken from 2014-204. through the PubMed, Perish, and Google Scholar Database applications. The active compounds found in bean sprouts are very beneficial for increasing HGH hormone levels, including vitamin E, vitamin C, phenols, flavonoids, and phytosterols. Bean sprouts can also be used as a medical treatment for curing cancer, diabetes, viral infections, Antihypertensive Properties, Hepatoprotective, and so on.
Cite this article:
Nurbaety, Jumriani. Studies of Potential Mung Bean (Vigna radiata (L.) Wilczek) Sprouts in Increasing Human Growth Hormone (HGH) and Health benefits in Global Medicine: A Literature Review. Research Journal of Pharmacy and Technology. 2025;18(10):5101-8. doi: 10.52711/0974-360X.2025.00737
Cite(Electronic):
Nurbaety, Jumriani. Studies of Potential Mung Bean (Vigna radiata (L.) Wilczek) Sprouts in Increasing Human Growth Hormone (HGH) and Health benefits in Global Medicine: A Literature Review. Research Journal of Pharmacy and Technology. 2025;18(10):5101-8. doi: 10.52711/0974-360X.2025.00737 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-10-76
REFERENCES:
1. Kudre TG, Benjakul S, Kishimura H. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. J Sci Food Agric. 2013; 93(10): 2429–2436. doi: 10.1002/jsfa.6052
2. Kazłowski B, Chen M-R, Chao P-M, Lai C-C, Ko Y-T. Identification and roles of proteins for seed development in mungbean (Vigna radiata L.) seed proteomes. J Agric Food Chem. 2013; 61(27): 6650–6659. doi: 10.1021/jf401170g.
3. Corrales FJ, Odriozola L. Principles of nutrigenetics and nutrigenomics. New York: Academic Press; 2020. Proteomic Analyses; 69–74
4. Yi-Shen Z, Shuai S, FitzGerald R. Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food Nutr Res. 2018; 62: 1290–1300. doi: 10.29219/fnr.v62.1290.
5. Urmi Roy, Ushri Roy. AFLP analysis of Genetic diversity and Phylogenetic relationships of Vigna radiata (L) Wilczek. Research Journal of Pharmacy and Technology. 2021; 14(8): 4122-8. doi: 10.52711/0974-360X.2021.00714
6. Purwandhono, Azham; Normasari, Rena. Effect of Mung Bean Sprout (Vigna radiata (L)) Extract on Physical Stress-Induced Atherosclerosis of Male Wistar Rat. Journal of Agromedicine and Medical Sciences, [S.l.], v. 1, n. 2, p. 26-30, oct. 2015. ISSN 2714-5654. Available at: <https://jurnal.unej.ac.id/index.php/JAMS/article/view/1956>. Date accessed: 12 nov. 2024.
7. Lin P-Y, Lai H-M. Bioactive compounds in legumes and their germinated products. J Agric Food Chem. 2006; 54(11): 3807–3814. doi: 10.1021/jf060002o.
8. Peñas E, Gomez R, Frias J, Baeza ML, Vidal-Valverde C. High hydrostatic pressure effects on immunoreactivity and nutritional quality of soybean products. Food Chem. 2011; 125(2): 423–429.
9. Tang D, Dong Y, Ren H, Li L, He C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata) Chem Cent J. 2014; 8(1): 4. doi: 10.1186/1752-153X-8-4.
10. Urmi Roy, Ushri Roy. Polyamines in Vigna radiata (L.) Wilczek plant growth and development. Research Journal of Pharmacy and Technology. 2022; 15(6): 2585-1. doi: 10.52711/0974-360X.2022.00432
11. Lee SJ, Lee JH, Lee HH, Lee S, Kim SH, Chun T, Imm JY. Effect of mung bean ethanol extract on pro-inflammtory cytokines in LPS stimulated macrophages. Food Sci. Biotechnol. 2011; 20: 519–524. doi: 10.1007/s10068-011-0072-z.
12. Li L, Li MH, Ren HK, Shi YJ, Dong YM. Anti-allergic effects and related active constituents of mung bean (Vignaradiatus Linn) sprouts. Food Sci Biotechnol. 2016; Apr 30; 25(2): 553-559. doi: 10.1007/s10068-016-0077-8. PMID: 30263305; PMCID: PMC6049181.
13. Wang Y. Study on the dynamic change of total flavonoids content and its antioxidant function in germinative mung bean. Master's thesis, Jilin Agricultural University, Changchun, China (2011)
14. Xu H, Zhou Q, Liu B, Cheng KW, Chen F, Wang M. Neuroprotective Potential of Mung Bean (Vigna radiata L.) Polyphenols in Alzheimer's Disease: A Review. J Agric Food Chem. 2021; Oct 6; 69(39): 11554-11571. doi: 10.1021/acs.jafc.1c04049. Epub 2021; Sep 22. PMID: 34551518.
15. Tang D, Dong Y, Guo N, Li L, Ren H. Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts. J Sci Food Agric. 2014; Jun; 94(8): 1639-47. doi: 10.1002/jsfa.6471. Epub 2013 Dec 3. PMID: 24203396.
16. Dueñas M. Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Res. Int. 2015;70:55–63. doi: 10.1016/j.foodres.2015.01.018.
17. Van Hung P., Hoang Yen N.T., Lan Phi N.T., Ha Tien N.P., Thu Trung N.T. Nutritional composition, enzyme activities and bioactive compounds of mung bean (Vigna radiata L.) germinated under dark and light conditions. LWT. 2020; 133: 110100. doi: 10.1016/j.lwt.2020.110100.
18. Guo X., Li T., Tang K., Liu R.H. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata) J. Agric Food Chem. 2012; 60: 11050–11055. doi: 10.1021/jf304443u
19. Xiang J., Apea-Bah F.B., Ndolo V.U., Katundu M.C., Beta T. Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem. 2019; 275: 361–368. doi: 10.1016/j.foodchem.2018.09.120
20. Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients. 2019; 11(6): 1238. doi: 10.3390/nu11061238. PMID: 31159173; PMCID: PMC6627095.
21. Nakamura K, Koyama M, Ishida R, Kitahara T, Nakajima T, Aoyama T. Characterization of bioactive agents in five types of marketed sprouts and com-parison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs, J Food Sci Technol. 2016; 53(1): 581– 90.10.1007/s13197-015-2048-0.
22. He C, Wang K, Xia J, Qian D, Guo J, Zhong L, Tang D, Chen X, Peng W, Chen Y, Tang Y. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway. J Nanobiotechnology. 2023; Sep 28; 21(1): 349. doi: 10.1186/s12951-023-02120-w. PMID: 37759297; PMCID: PMC10536756.
23. Aierken A, Li B, Liu P, Cheng X, Kou Z, Tan N et al. Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diab-etes mellitus via the PI3K/Akt signaling pathway, Stem Cell Res Ther. 13(1) 2022; 164.10.1186/s13287-022-02832-0.
24. Sun H, Liu X, Long SR, Teng Wang, Ge H, Wang Y et al. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats, Eur J Pharmacol. 859 (2019) 172526.10.1016/j.ejphar.2019.172526
25. Ouyang Q, Wu CM, Liu SH, Wang LJ, Yao JM, Zhao AJ, et al. Ercao Qinggan decoction regulates apoptosis of hepatocytes in mice with acute liver failure via the TLR4-mediated PI3K/Akt/GSK3β signal pathway. TMR Integr Med. 2023; 7: e23020. doi: 10.53388/TMRIM202307020.
26. Zhang Q, Li RL, Wang LY, Zhang T, Qian D, Tang DD et al. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum Maxim. has antidiabetic effects on high-fat-fed and streptozotocin-treated mice via increasing glycogen synthesis by regulation of PI3K/Akt/ GSK-3β/GS signaling, Front Pharmacol. 13 (2022) 1089558.10.3389/fphar.2022.1089558.
27. Betancur-Galvis LA, Morales GE, Forero JE, Roldan J. Cytotoxic and antiviral activities of Colombian medicinal plant extracts of the Euphorbia genus. Mem Inst Oswaldo Cruz. 2002; 97: 541–6. doi: 10.1590/S0074-02762002000400017
28. Hafidh RR, Abdulamir AS, Abu Bakar F, Sekawi Z, Jahansheri F, Jalilian FA. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus -1: an in vitro study on virally infected Vero and MRC-5 cell lines. BMC Complement Altern Med. 2015; Jun 11; 15: 179. doi: 10.1186/s12906-015-0688-2. PMID: 26062546; PMCID: PMC4461985.
29. Hafidh RR, Abdulamir AS, Bakar FA, Jalilian FA, Abas F, Sekawi Z. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of mung bean sprouts. BMC Complement Altern Med. 2012; Nov 5; 12:208. doi: 10.1186/1472-6882-12-208. PMID: 23122182; PMCID: PMC3522559.
30. Bidlingmaier M, Strasburger CJ. Growth hormone. Handb Exp Pharmacol. 2010;(195):187-200. doi: 10.1007/978-3-540-79088-4_8. PMID: 20020365.
31. Grimberg A, Allen DB. Growth hormone treatment for growth hormone deficiency and idiopathic short stature: new guidelines shaped by the presence and absence of evidence. Curr Opin Pediatr. 2017 Aug;29(4):466-471. doi: 10.1097/MOP.0000000000000505. PMID: 28525404; PMCID: PMC5565215.
32. Allen DB. Growth Promotion Ethics and the Challenge to Resist Cosmetic Endocrinology. Horm Res Paediatr. 2017 Mar 2; doi: 10.1159/000458526. [Epub ahead of print] A critical analysis of clinical and ethical issues arising from the hGH era
33. Gabow P, Halvorson G, Kaplan G. Marshaling leadership for high-value health care: an Institute of Medicine discussion paper. JAMA. 2012;308(3):239–240. doi: 10.1001/jama.2012.7081.
34. Allen DB, Backeljauw P, Bidlingmaier M, et al. GH safety workshop position paper: a critical appraisal of recombinant human GH therapy in children and adults. Eur J Endocrinol. 2016;174(2):P1–9. doi: 10.1530/EJE-15-0873. Important consensus conference assessment of current knowledge of hGH safety and need for long-term surveillance.
35. Rajkovic A, Kanchugal S, Abdurakhmanov E, Howard R, Wärmländer S, Erwin J, Barrera Saldaña HA, Gräslund A, Danielson H, Flores SC. Amino acid substitutions in human growth hormone affect secondary structure and receptor binding. PLoS One. 2023 Mar 23;18(3):e0282741. doi: 10.1371/journal.pone.0282741. PMID: 36952491; PMCID: PMC10035860.
36. Flores SC, Alexiou A, Glaros A. Mining the Protein Data Bank to improve prediction of changes in protein-protein binding. PLoS One. 2021;16(11):e0257614. Epub 20211102. doi: 10.1371/journal.pone.0257614 ; PubMed Central PMCID: PMC8562805.
37. Hsu G., Lu Y., Chang S., Hsu S. Antihypertensive effect of mung bean sprout extract in spontaneously hypertensive rats. J. Food Biochem. 2011;35:278–288. doi: 10.1111/j.1745-4514.2010.00381.x.
38. Gan R.-Y., Lui W.-Y., Wu K., Chan C.-L., Dai S.-H., Sui Z.-Q., Corke H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017;59:1–14. doi: 10.1016/j.tifs.2016.11.010.
39. Lopes L.A.R., Martins M.D.C.d.C.e., Farias L.M.d., Brito A.K.d.S., Lima G.D.M., Carvalho V.B.L.d., Pereira C.F.d.C., Conde Júnior A.M., Saldanha T., Arêas J.A.G., et al. Cholesterol-lowering and liver-protective effects of cooked and germinated mung beans (Vigna radiata L.) Nutrients. 2018;10:821. doi: 10.3390/nu10070821.
40. Golabi P., Bush H., Younossi Z.M. Treatment strategies for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Clin. Liver Dis. 2017;21:739–753. doi: 10.1016/j.cld.2017.06.010.
41. Alshammari G.M., Balakrishnan A., Chinnasamy T. Protective role of germinated mung bean against progression of non-alcoholic steatohepatitis in rats: A dietary therapy to improve fatty liver health. J. Food Biochem. 2018; 42:e12542. doi: 10.1111/jfbc.12542.
42. Wu S.J., Wang J.S., Lin C.C., Chang C.H. Evaluation of hepatoprotective activity of legumes. Phytomedicine. 2001; 8: 213–219. doi: 10.1078/0944-7113-00033.