Author(s):
Gursewak Singh, Shubham Upadhayay, Uma Shanker Navik, Puneet Kumar, Ashi Mannan, Thakur Gurjeet Singh
Email(s):
sewak6050@gmail.com , upadhayay.shubham11@gmail.com , usnavik@gmail.com , punnubansal79@gmail.com , ashimannan@gmail.com , gurjeet.singh@chitkara.edu.in , gurjeetthakur@gmail.com
DOI:
10.52711/0974-360X.2025.00739
Address:
Gursewak Singh1, Shubham Upadhayay1, Uma Shanker Navik1, Puneet Kumar1*, Ashi Mannan2, Thakur Gurjeet Singh2*
1Department of Pharmacology, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda, India.
2Chitkara College of Pharmacy, Chitkara University, Punjab, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
Background: Schizophrenia is a mental disorder, with antipsychotic medicine as its principal treatment. Nonetheless, prolonged administration of conventional antipsychotics frequently induces irregular involuntary movements, particularly affecting the orofacial area, leading to Tardive Dyskinesia (TD). There is no effective treatment for TD. Arbutin is a natural polyphenol recognised for its neuroprotective properties. Arbutin's neuroprotective effectiveness against the neurotoxicity and orofacial dysfunction caused by haloperidol in TD rats was evaluated in this work. Methods and Results: Wistar rats were administered haloperidol (1 mg/kg/i.p.) over 21 days to generate symptoms resembling TD. The therapy markedly elevated tongue protrusions, vacuous chewing movements, facial jerks, as well as compromised motor coordination and locomotor activity, which was mitigated following arbutin administration. Moreover, arbutin administration yield in a substantial reduction in TBARS, nitric oxide, TNF-a, as well as IL-ß, while elevating catalase, GSH, and SOD levels in comparison to haloperidol-treated rats. Conclusion: Study data indicate that arbutin possesses neuroprotective effect which mitigates progression of TD. These findings suggest that arbutin possesses antioxidant as well as anti-inflammatory activity that enhance motor function and may be investigated for cellular and molecular mechanisms for potential application in the treatment and management of TD.
Cite this article:
Gursewak Singh, Shubham Upadhayay, Uma Shanker Navik, Puneet Kumar, Ashi Mannan, Thakur Gurjeet Singh. Neuroprotection by Arbutin against Haloperidol-Induced Tardive Dyskinesia in Rats via Antioxidant and Anti-Inflammatory Activity. Research Journal Pharmacy and Technology. 2025;18(11):5121-7. doi: 10.52711/0974-360X.2025.00739
Cite(Electronic):
Gursewak Singh, Shubham Upadhayay, Uma Shanker Navik, Puneet Kumar, Ashi Mannan, Thakur Gurjeet Singh. Neuroprotection by Arbutin against Haloperidol-Induced Tardive Dyskinesia in Rats via Antioxidant and Anti-Inflammatory Activity. Research Journal Pharmacy and Technology. 2025;18(11):5121-7. doi: 10.52711/0974-360X.2025.00739 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-1
REFERENCES:
1. Jackson R, Brams MN, Citrome L, et al. Assessment of the Impact of Tardive Dyskinesia in Clinical Practice: Consensus Panel Recommendations. Neuropsychiatr Dis Treat. 2021; 17: 1589-1597. doi:10.2147/NDT.S310605
2. Stahl SM. Neuronal traffic signals in tardive dyskinesia: not enough “stop” in the motor striatum. CNS Spectr. 2017; 22(6): 427-434. doi:10.1017/S109285291700061X
3. Sharma V, Bedi O, Gupta M, Deshmukh R. A review: traditional herbs and remedies impacting pathogenesis of Parkinson’s disease. Naunyn-Schmiedeberg’s Arch Pharmacol. 2022; 395(5): 495-513. doi:10.1007/s00210-022-02223-5
4. Behl T, Kaur G, Sehgal A, et al. Multifaceted Role of Matrix Metalloproteinases in Neurodegenerative Diseases: Pathophysiological and Therapeutic Perspectives. Int J Mol Sci. 2021; 22(3): 1413. doi:10.3390/ijms22031413
5. Bhattacharya T, Soares GAB e, Chopra H, et al. Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders. Materials (Basel). 2022; 15(3): 804. doi:10.3390/ma15030804
6. Kruyer A, Parilla-Carerro J, Powell C, et al. Accumbens D2-MSN hyperactivity drives behavioral supersensitivity. Published online November 13, 2020: 2020.11.12.380667. doi:10.1101/2020.11.12.380667
7. Loonen AJ, Ivanova SA. Neurobiological mechanisms associated with antipsychotic drug-induced dystonia. J Psychopharmacol. 2021; 35(1): 3-14. doi:10.1177/0269881120944156
8. Mujittapha SU, Kauthar M, Azeez IO, Oyem JC. Ascorbic acid improves extrapyramidal syndromes and corpus striatal degeneration induced by dopamine-2 receptor inhibition in Wistar rats. Drug Metab Pers Ther. Published online November 2, 2020:/j/dmdi.ahead-of-print/dmdi-2020-0137/dmdi-2020-0137.xml. doi:10.1515/dmdi-2020-0137
9. Hu M, Wang R, Chen X, et al. Resveratrol prevents haloperidol-induced mitochondria dysfunction through the induction of autophagy in SH-SY5Y cells. Neurotoxicology. 2021; 87: 231-242. doi:10.1016/j.neuro.2021.10.007
10. Kadir A, Singh J, Rahi V, Kumar P. Berberine Ameliorate Haloperidol and 3-Nitropropionic Acid-Induced Neurotoxicity in Rats. Neurochem Res. 2022; 47(11): 3285-3297. doi:10.1007/s11064-022-03677-y
11. Derouiche S, Cheradid T, Guessoum M. Heavy metals, Oxidative stress and Inflammation in Pathophysiology of Chronic Kidney disease - A Review. Asian Journal of Pharmacy and Technology. 2020; 10(3): 202-206. doi:10.5958/2231-5713.2020.00033.1
12. Thaakur SR, Jyothi B. Effect of spirulina maxima on the haloperidol induced tardive dyskinesia and oxidative stress in rats. J Neural Transm (Vienna). 2007; 114(9): 1217-1225. doi:10.1007/s00702-007-0744-2
13. Bhargava SK, Singh TG, Mannan A, Singh S, Singh M, Gupta S. Pharmacological evaluation of Thuja occidentalis for the attenuation of neuropathy via AGEs and TNF-α inhibition in diabetic neuropathic rats. Environ Sci Pollut Res Int. 2022; 29(40):60542-60557. doi:10.1007/s11356-022-20106-3
14. L NK, Bhattacharjee A, Hegde K. A Study to Evaluate the Neuroprotective property of Aqueous Extract of Mentha piperita Leaves on Haloperidol Induced Parkinsonism in Experimental rats. Asian Journal of Pharmaceutical Research. 2023; 13(3): 139-144. doi:10.52711/2231-5691.2023.00027
15. Patel KN, Gajjar UH, Patel PU, Pancholi SS. Development and Validation of RP-HPLC Method for Simultaneous Estimation of Haloperidol and Trihexyphenidyl Hydrochloride in Tablet Dosage Form. Asian Journal of Pharmaceutical Analysis. 2022; 12(4): 253-257. doi:10.52711/2231-5675.2022.00041
16. Polydoro M, Schroder N, Lima MNM, et al. Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav. 2004; 78(4): 751-756. doi:10.1016/j.pbb.2004.05.018
17. Kumar N, James R, Sinha S, Kinra M, Anuranjana PV, Nandakumar K. Naringin exhibited Anti-Parkinsonian like effect against haloperidol-induced catalepsy in mice. Research Journal of Pharmacy and Technology. 2021; 14(2): 662-666. doi:10.5958/0974-360X.2021.00118.9
18. Saeedi M, Khezri K, Seyed Zakaryaei A, Mohammadamini H. A comprehensive review of the therapeutic potential of α-arbutin. Phytother Res. 2021; 35(8): 4136-4154. doi:10.1002/ptr.7076
19. Fan Z, Zhao F, Huang H, Huang X. Arbutin mitigates chronic hypertension-induced optic nerve damage in rats via regulation of inflammatory cytokine levels and oxidative stress. 2021;20.
20. Jurica K, Gobin I, Kremer D, et al. Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. Journal of Herbal Medicine. 2017; 8: 17-23. doi:10.1016/j.hermed.2017.03.006
21. Kumar M, Singh G, Kushwah AS, Surampalli G, Singh TG, Gupta S. Arbutin protects brain against middle cerebral artery occlusion-reperfusion (MCAo/R) injury. Biochem Biophys Res Commun. 2021; 577: 52-57. doi:10.1016/j.bbrc.2021.09.006
22. Dastan Z, Pouramir M, Ghasemi-Kasman M, et al. Arbutin reduces cognitive deficit and oxidative stress in animal model of Alzheimer’s disease. Int J Neurosci. 2019; 129(11): 1145-1153. doi:10.1080/00207454.2019.1638376
23. Zhao J, Kumar M, Sharma J, Yuan Z. Arbutin effectively ameliorates the symptoms of Parkinson’s disease: the role of adenosine receptors and cyclic adenosine monophosphate. Neural Regen Res. 2021; 16(10): 2030-2040. doi:10.4103/1673-5374.308102
24. Ahmadian SR, Ghasemi-Kasman M, Pouramir M, Sadeghi F. Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy. Neuropharmacology. 2019; 146: 117-127. doi:10.1016/j.neuropharm.2018.11.038
25. Kumar M, Kumar A, Sindhu RK, Kushwah AS. Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats. Neurochem Int. 2021; 151: 105217. doi:10.1016/j.neuint.2021.105217
26. Thakur KS, Prakash A, Bisht R, Bansal PK. Beneficial effect of candesartan and lisinopril against haloperidol-induced tardive dyskinesia in rat. J Renin Angiotensin Aldosterone Syst. 2015; 16(4): 917-929. doi:10.1177/1470320313515038
27. Kumar P, Kumar A. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J Med Food. 2009; 12(3): 591-600. doi:10.1089/jmf.2008.0028
28. Jamwal S, Kumar P. Spermidine ameliorates 3-nitropropionic acid (3-NP)-induced striatal toxicity: Possible role of oxidative stress, neuroinflammation, and neurotransmitters. Physiol Behav. 2016; 155: 180-187. doi:10.1016/j.physbeh.2015.12.015
29. Rahi V, Ram P, KUMAR P. Neuroprotective Effect of Filgrastim in Animal Models of 3-Nitropropionic Acid & Haloperidol Induced Neurotoxicity in Rat. Published online 2021. doi:10.21203/rs.3.rs-158354/v1
30. Jamwal S, Kumar P. L-theanine, a Component of Green Tea Prevents 3-Nitropropionic Acid (3-NP)-Induced Striatal Toxicity by Modulating Nitric Oxide Pathway. Mol Neurobiol. 2017; 54(3): 2327-2337. doi:10.1007/s12035-016-9822-5
31. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys. 1978; 186(1): 189-195. doi:10.1016/0003-9861(78)90479-4
32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1): 265-275.
33. Kaur N, Jamwal S, Deshmukh R, Gauttam V, Kumar P. Beneficial effect of rice bran extract against 3-nitropropionic acid induced experimental Huntington’s disease in rats. Toxicol Rep. 2015; 2: 1222-1232. doi:10.1016/j.toxrep.2015.08.004
34. Waskito BA, Sargowo D, Kalsum U, Tjokroprawiro A. The Role of Ipomoea batatas Leaves Extract as a Potent Antioxidant and Anti-inflammatory in Rats Fed High-fat Diet. Research Journal of Pharmacy and Technology. 2022; 15(6): 2395-2401. doi:10.52711/0974-360X.2022.00398
35. Ding Y, Kong D, Zhou T, et al. α-Arbutin Protects Against Parkinson’s Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo. Neuromolecular Med. 2020; 22(1): 56-67. doi:10.1007/s12017-019-08562-6
36. Kawas G, Mansour O, Okdah M, Sakur AA. Spectrophotometric Determination of Haloperidol in Pure Form and Pharmaceutical Formulation using Calcon and Amido Black. Research Journal of Pharmacy and Technology. 2016; 9(2): 139-144. doi:10.5958/0974-360X.2016.00023.8
37. Wang MH, Yang CC, Tseng HC, Fang CH, Lin YW, Soung HS. Naringin Ameliorates Haloperidol-Induced Neurotoxicity and Orofacial Dyskinesia in a Rat Model of Human Tardive Dyskinesia. Neurotox Res. 2021; 39(3): 774-786. doi:10.1007/s12640-021-00333-1
38. Bishnoi M, Chopra K, Kulkarni SK. Co-administration of nitric oxide (NO) donors prevents haloperidol-induced orofacial dyskinesia, oxidative damage and change in striatal dopamine levels. Pharmacol Biochem Behav. 2009; 91(3): 423-429. doi:10.1016/j.pbb.2008.08.021
39. Dadgar M, Pouramir M, Dastan Z, et al. Arbutin attenuates behavioral impairment and oxidative stress in an animal model of Parkinson’s disease. Avicenna J Phytomed. 2018; 8(6): 533-542. Accessed July 25, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235658/
40. Nagaoka K, Nagashima T, Asaoka N, et al. Striatal TRPV1 activation by acetaminophen ameliorates dopamine D2 receptor antagonist-induced orofacial dyskinesia. JCI Insight. 2021; 6(10): e145632, 145632. doi:10.1172/jci.insight.145632
41. J S, T T, P A, K R, E B. Role of caffeine intake in lithium treated methylphenidate induced oxidative stress in an animal model of mania. Asian Journal of Pharmaceutical Research. 2013;3(4):166-171. Accessed March 4, 2024. https://asianjpr.com/AbstractView.aspx?PID=2013-3-4-2
42. Lohr JB, Kuczenski R, Bracha HS, Moir M, Jeste DV. Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia. Biol Psychiatry. 1990; 28(6): 535-539. doi:10.1016/0006-3223(90)90490-s
43. Saha D, Tamrakar A. Xenobiotics, Oxidative Stress, Free Radicals Vs. Antioxidants: Dance Of Death to Heaven’s Life. Asian Journal of Research in Pharmaceutical Sciences. 2011; 1(2): 36-38. Accessed March 4, 2024. https://ajpsonline.com/AbstractView.aspx?PID=2011-1-2-2
44. Bandaru N, Komavari C, Gorla US, Koteswarao GSN, Kulandaivelu U, Ankarao A. Neuroprotective effect of Conessinin on Elevated oxidative stress induced Alzheimers’disease in rats. Research Journal of Pharmacy and Technology. 2020; 13(6): 2703-2707. doi:10.5958/0974-360X.2020.00481.3
45. Vineela S, Thakur SR. Sinapic acid ameliorates Acrylamide induced Neurotoxicity through inhibition of oxidative stress in rats. Research Journal of Pharmacy and Technology. 2020;13(12):6009-6016. doi:10.5958/0974-360X.2020.01048.3
46. Ebrahim-Tabar F, Nazari A, Pouramir M, Ashrafpour M, Pourabdolhossein F. Arbutin Improves Functional Recovery and Attenuates Glial Activation in Lysolecethin-Induced Demyelination Model in Rat Optic Chiasm. Mol Neurobiol. 2020; 57(7): 3228-3242. doi:10.1007/s12035-020-01962-x
47. Kajero JA, Seedat S, Ohaeri J, Akindele A, Aina O. Investigation of the effects of cannabidiol on vacuous chewing movements, locomotion, oxidative stress and blood glucose in rats treated with oral haloperidol. World J Biol Psychiatry. 2020; 21(8): 612-626. doi:10.1080/15622975.2020.1752934