Author(s):
Susilowati, Ardy Prian Nirwana, Dwi Koko Pratoko, Nastiti Utami, Selsa Rizky Widya Ariyanto
Email(s):
susilowati@stikesnas.ac.id
DOI:
10.52711/0974-360X.2025.00749
Address:
Susilowati, Ardy Prian Nirwana, Dwi Koko Pratoko, Nastiti Utami, Selsa Rizky Widya Ariyanto
Sekolah Tinggi Ilmu Kesehatan Nasional, Sukoharjo, Central Java, 57552, Indonesia
Faculty of Pharmacy, Universitas Jember, Jember, Indonesia, 68121
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
Palmarosa essential oil (PEO) was extracted from the leaves, stems, and herbs of Cymbopogon martinii using steam distillation. GC-MS analysis was used for identifying and quantifying the PEO components, cytotoxicity activity on the T-47D cell line was tested by MTT assay, and apoptosis induction was monitored by double staining (ethidium bromide-orange acridine). Docking simulations of PEO compounds were tested using the PyRx 0.8 program against estrogen receptor alpha (PDB ID: 1XP1) and progesterone receptor (PDB ID: 4OAR) proteins. PEO from each part of C. martinii showed different compositions, nevertheless, geraniol and geranyl acetate were recognized as major components. Furthermore, cytotoxicity activity (IC50) results showed that the leaves PEO has the strongest activity than stems and herbs. This PEO was able to induce apoptosis of the T-47D cell line marked by orange fluorescence in cell morphology. Our molecular docking study demonstrated that 4,11-Selinadiene and ß-Caryophyllene have a higher binding affinity than other PEO compounds. In addition, 4,11-Selinadiene was only found in leaves and ß-Caryophyllene was higher in leaves than stems and herbs PEO. It could be concluded that these two compounds were responsible as inhibitors against the T-47D breast cancer cell line.
Cite this article:
Susilowati, Ardy Prian Nirwana, Dwi Koko Pratoko, Nastiti Utami, Selsa Rizky Widya Ariyanto. Palmarosa Essential Oil Study: Composition, Cytotoxicity and Molecular Docking on T-47D. Research Journal Pharmacy and Technology. 2025;18(11):5191-0. doi: 10.52711/0974-360X.2025.00749
Cite(Electronic):
Susilowati, Ardy Prian Nirwana, Dwi Koko Pratoko, Nastiti Utami, Selsa Rizky Widya Ariyanto. Palmarosa Essential Oil Study: Composition, Cytotoxicity and Molecular Docking on T-47D. Research Journal Pharmacy and Technology. 2025;18(11):5191-0. doi: 10.52711/0974-360X.2025.00749 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-11
REFERENCES:
1. WHO. World Health Organization. Breast Cancer. 2023. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
2. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast. 2022; 66(June): 15–23. https://doi.org/10.1016/j.breast.2022.08.010
3. Sowerbutts AM, Griffiths J, Todd C, Lavelle K. Why are older women not having surgery for breast cancer? A qualitative study. Psychooncology. 2015; 24(9): 1036–42. https://doi.org/10.1002/pon.3764
4. Jainab NH, Raja MKMM. In Silico Molecular Docking Studies on the Chemical Constituents of Clerodendrum phlomidis for its Cytotoxic Potential against Breast Cancer Markers. Res J Pharm Tech. 2018; 11(4): 1612–8. https://doi.org/10.5958/0974-360X.2018.00300.1
5. Fatma F, Kumar A. The Cell Cycle, Cyclins, Checkpoints and Cancer. Asian J Res Pharm Sci. 2021; 11(2): 175–3. https://doi.org/10.52711/2231-5659.2021-11-2-14
6. Dai X, Cheng H, Bai Z, Li J. Breast Cancer Cell Line Classification and Its Relevan ce with Breast Tumor Subtyping. Journal of Cancer. 2017; 8. https://doi.org/10.7150/jca.18457
7. Yu S, Kim T, Hyun K, Kang K. Biochemical and Biophysical Research Communications The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochem Biophys Res Commun. 2017; 1–7. http://dx.doi.org/10.1016/j.bbrc.2017.03.114
8. Asma ST, Acaroz U, Imre K, Morar A, Shah SRA, Hussain SZ, et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers (Basel). 2022; 14(24). https://doi.org/10.3390/cancers14246203
9. Luqman EM, Widjiati, Mafruchati M, Sunardi RBP, Hestianah EP. Crosstalk between Necrosis and Apoptosis of Embryonal Cerebral Cortex Neuron Mice (Mus musculus) Caused by Carbofuran Exposure. Res J Pharm Tech. 2019; 12(11): 5492–8. https://doi.org/10.5958/0974-360X.2019.00953.3
10. Churiyah C, Ningsih S, Firdayani F. The Cytotoxic, Apoptotic Induction, and Cell Cycle Arrest Activities of Solanum nigrum L. Ethanolic Extract on MCF-7 Human Breast Cancer Cell. Asian Pacific J Cancer Prev. 2020; 21(12): 3735–41. https://doi.org/10.31557/APJCP.2020.21.12.3735
11. Promila WP. A review on the medicinal and aromatic Plant - Cymbopogon martinii (Roxb.) Watson (Palmarosa). 2020; (April). https://doi.org/10.31557/APJCP.2020.21.12.3735
12. Sönmez Gürer E, Tunç T. In Vitro of Melaleuca viridiflora Sol. ex Gaertn Plant Investigation of Antimicrobial, Anticancer and Cytotoxic Activities. Turkish J Agric - Food Sci Technol. 2022; 10(10): 2056–60. https://doi.org/10.24925/turjaf.v10i10.2056-2060.5481
13. Utami N, Lindawati NY, Kristy TK. Quality Evaluation and Effectiveness of Palmarosa (Cymbopogon martinii var. motia) Essential oils as repellents against Aedes aegypti. Res J Pharm Technol. 2023; 16(12). https://doi.org/10.52711/0974-360X.2023.00972
14. Cho M, So I, Chun JN, Jeon JH. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review). Int J Oncol. 2016; 48(5): 1772–82. https://doi.org/10.3892/ijo.2016.3427
15. Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother [Internet]. 2022; 146(112514). Available from: https://doi.org/10.1016/j.biopha.2021.112514
16. Susilowati, Anggraini TD. Efek sitotoksisitas dan Selektivitas Fraksi Aktif Ekstrak Daun Kelor (Moringa oleifera Lamk.) terhadap Sel Kanker Payudara T47D. J Farmasains. 2018; 5(2): 50–1. https://doi.org/10.22236/farmasains.v5i2.2149
17. Abifarin TO, Otunola GA, Afolayan AJ. Chemical Composition of Essential Oils Obtained from Heteromorpha arborescens (Spreng.) Cham. and Schltdl Leaves Using Two Extraction Methods. 2020; 3(12). https://doi.org/10.1155/2020/9232810
18. Astuti P, Pratoko DK, Rollando R, Nugroho GW, Wahyuono S, Hertiani T, et al. Bioactivities of A Major Compound from Arthrinium rasikravindrae An Endophytic Fungus of Coleus amboinicus Lour. Fabad J Pharm Sci. 2021; 46(1): 23–30. https://www.proquest.com/scholarly-journals/bioactivities-major-compound-arthrinium/docview/2508651557/se-2
19. Susilowati S, Anggraini TD, Kotimah N. Sitotoksisitas dan Selektivitas In Vitro Daun Benalu Cengkeh (Dendrophthoe pentandra L. Miq) terhadap Sel Kanker Serviks HeLa. J Pharmascience. 2022; 9(2): 258. https://ppjp.ulm.ac.id/journal/index.php/pharmascience.
20. Mishra SK, Doshi GM, Chaskar PK, Sahu1 PK. Shodhana attenuates Cytotoxicity of methanolic extract of Semecarpus anacardium nuts. Res J Pharm Tech. 2017; 10(2): 567–74. https://doi.org/10.5958/0974-360X.2017.00113.5
21. Sajjadi SE, Ghanadian M, Haghighi M, Mouhebat L. Cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells. J HerbMed Pharmacol. 2015; 4(1): 15–9. https://herbmedpharmacol.com/Article/JHP_20150527173352
22. Indrayanto G, Putra GS, Suhud F. Validation of in-vitro bioassay methods : Application in herbal drug research. 1st ed. Prof. of Drug Substances, Excipients and Related Methodology. Elsevier Inc.; 2020. 1–35 p. Available from: http://dx.doi.org/10.1016/bs.podrm.2020.07.005.
23. KEPEKÇİ, A and KIG, C. Acridine orange/ethidium bromide (AO/EtBr) double staining. 2022. Bio-protocol Preprint. bio-protocol.org/prep1717 .
24. Patil VS, Patil PA. Molecular Docking: A useful approach of Drug Discovery on the Basis of their Structure. Asian J Pharm Res. 2023; 13(3): 191–5. http://dx.doi.org/10.52711/2231-5691.2023.00036
25. Clusan L, Ferrière F, Flouriot G, Pakdel F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int J Mol Sci. 2023; 24(7). https://doi.org/10.3390/ijms24076834
26. Trabert B, Sherman ME, Kannan N, Stanczyk FZ. Progesterone and Breast Cancer. Endocr Rev. 2020; 41(2): 320–344. https://doi.org/10.1210/endrev/bnz001
27. Acharya R, Chacko S, Bose P, Lapenna A, Pattanayak SP. Structure Based Multitargeted Molecular Docking Analysis of Selected Furanocoumarins against Breast Cancer. Sci Rep. 2019 Oct 31; 9(1): 15743. doi: https://doi.org/10.1038/s41598-019-52162-0
28. Seeliger D, Groot and BL de. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol. 2010; 24(5): 417–422. https://doi.org/10.1007/s10822-010-9352-6
29. Dallakyan S, Olson AJ. Small-Molecule Library Screening by Docking with PyRx. In: Chemical Biology [Internet]. New York: Humana Press; 2015. p. 243–50. Available from: https://doi.org/10.1007/978-1-4939-2269-7_19
30. Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018; 23(5): 1038. https://doi.org/10.3390/molecules23051038
31. Bell EW, Zhang Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. J Cheminform [Internet]. 2019; 11(1): 1–9. https://doi.org/10.1186/s13321-019-0362-7
32. Nejad MS, Ozhunes H, Basaran N. Pharmacological and Toxicological Properties of Eugenol. 2017; 14(2): 201–6. https://doi.org/10.4274/tjps.62207
33. Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. Oxid Med Cell Longev. 2021; 2021. https://doi.org/10.1155/2021/2497354
34. Musfiroh I, Muchtaridi M, Muhtadi A, Diantini A, Hasanah AN, Udin LZ, et al. Cytotoxicity Studies of Xanthorrhizol and Its Mechanism Using Molecular Docking Simulation and Pharmacophore Modelling. 2013; 3(06): 7–15. http://dx.doi.org/10.7324/JAPS.2013.3602
35. Sinha S, Jothiramajayam M, Ghosh M, Mukherjee A. Evaluation of toxicity of essential oils palmarosa , citronella , lemongrass and vetiver in human lymphocytes. FOOD Chem Toxicol. 2014; 68: 71–7. http://dx.doi.org/10.1016/j.fct.2014.02.036
36. Muñoz O, Christenb P, Crettonb S, Barreroc AF, Larac A, Herrado MM. Comparison of the Essential Oils of Leaves and Stem Bark from Two Different Populations of Drimys winteri a. Nat Prod Commun. 2011; (32): 6–9. http://dx.doi.org/10.1177/1934578X1100600630
37. Nirmal SA, Girme AS, Bhalke RD. Major constituents and anthelmintic activity of volatile oils from leaves and flowers of Cymbopogon martini Roxb. Nat Prod Res Former Nat Prod Lett. 2014: 37–41. http://dx.doi.org/10.1080/14786410701552152
38. Tanavade SS, Naikwade N, Chougule DD. In vitro anticancer activity of ethanolic and aqueous extracts of Peristrophe bivalvis Merrill. Vol. 5, Research Journal of Pharmacy and Technology. 2012. p. 1324–7. https://rjptonline.org/AbstractView.aspx?PID=2012-5-10-9
39. Sharma PR, Mondhe DM, Muthiah S, Pal HC, Shahi AK, Saxena AK, Qazi GN. Anticancer activity of an essential oil from Cymbopogon flexuosus. Chem Biol Interact. 2009; May 15; 179(2-3):160-8. https://doi.org/10.1016/j.cbi.2008.12.004
40. Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF, et al. A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci. 2019;20:1–20. https://doi.org/10.3390/ijms20174133
41. Yusuf H, Kamarlis RK, Yusni. Growth Inhibition and Induction of Apoptosis In MCF-7 And T47D Breast Cancer Cell Lines by Ethanol Extract Of Seurapoh (Chromolaena odorata) Leaves. J Kedokt Hewan. 2020; 14(September): 73–9. https://doi.org/10.21157/j.ked.hewan.v14i3.17227
42. Liu K, Liu P cheng, Liu R, Wu X. Dual AO / EB Staining to Detect Apoptosis in Osteosarcoma Cells Compared with Flow Cytometry. Med Sci. 2015; 15–20. https://doi.org/10.12659/MSMBR.893327
43. Qi F, Yan Q, Zheng Z, Liu J, Chen Y, Zhang G. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest. J BUON. 2018; 23(2): 346-352. PMID: 29745075. https://www.jbuon.com/archive/23-2-346.pdf
44. Lee S, Park YR, Kim SH, Park EJ, Kang MJ, So I, et al. Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016; 5(10): 2899–908. https://doi.org/10.1002/cam4.864
45. Gateva S, Jovtchev G, Stankov A, Georgieva A, Dobreva A, Mileva M. The potential of geraniol to reduce cytotoxic and genotoxic effects of MNNG in plant and human lymphocyte test systems. South African J Bot. 2019; 123: 170–9. Available from: https://doi.org/10.1016/j.sajb.2019.03.005
46. Kuzu B, Cüce G, Ayan İÇ, Gültekin B, Tuba H, Dursun HG, et al. Evaluation of Apoptosis Pathway of Geraniol on Ishikawa Cells. Nutr Cancer. 2021; 73(11-12): 2532-2537. https://doi.org/10.1080/01635581.2020.1836244
47. Ghatage DD, Gosavi SR, Ganvir SM, Hazarey VK. Apoptosis : Molecular mechanism. 2012; 4(2). DOI: 10.4103/0975-8844.106199
48. Azzwali AAAA, Azab EA. Mechanisms of programmed cell death. J Appl Biotechnol Bioeng. 2019; 6(4): 156-158. DOI: 10.15406/jabb.2019.06.00188
49. Pawar SS, Rohane SH. Review on Discovery Studio: An important Tool for Molecular Docking. Asian J Res Chem. 2021; 14(1): 86–8. https://doi.org/10.5958/0974-4150.2021.00014.6
50. Dahham SS, Tabana YM, Iqbal MA, Ahamed MBK, Ezzat MO, Majid ASA, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015; 20(7): 11808–29. https://doi.org/10.3390/molecules200711808
51. Mboge MY, Ramirez-Mata A, Bullock A, O’Donnell R, Mathias J V., Davila J, et al. β-caryophyllene enhances the transcriptional upregulation of cholesterol biosynthesis in breast cancer cells. Curr Top Biochem Res. 2019; 20: 1–16. https://doi.org/10.31300/ctbr.20.2019.1-16