Author(s): Deni Setiawan, Samsul Hadi, Nurul Mardiati, Nur Mahdi, Amalia Khairunnisa, Aisya Aqifah, Hasyrul Hamzah, Siswadi

Email(s): deni.setiawan@ulm.ac.id

DOI: 10.52711/0974-360X.2025.00752   

Address: Deni Setiawan1*, Samsul Hadi1, Nurul Mardiati1, Nur Mahdi1, Amalia Khairunnisa1, Aisya Aqifah1, Hasyrul Hamzah2, Siswadi3
1Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Lambung Mangkurat Banjarbaru, South Kalimantan, Indonesia.
2Department of Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia.
3Research Organization for Health, National Research and Innovation Agency, Republic of Indonesia. Bogor, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 11,     Year - 2025


ABSTRACT:
Diabetic ulcer infections present a substantial obstacle to wound management due to the prevalence of persistent bacterial biofilms that are impervious to conventional antibiotic therapies. Nanomaterials have emerged as a revolutionary platform for addressing the challenges of antibiotic resistance and biofilm-associated infections. Researchers have the potential to employ Kratom in the development of antibiofilm medicines specifically designed to combat diabetic ulcer infections. This is due to its capacity to impede bacterial quorum sensing and disrupt the process of biofilm development. Objective of this study is to determine the antibiofilm properties of the nanogel derived from kratom extract in diabetic ulcer infections. The study was carried out on a 96-well flat-bottom polystyrene microtiter plate using various doses of test chemicals (1%, 0.5%, 0.25%, 0.125% w/v) to identify their effects on S. aureus. The concentration of extract in nanogel used was 10, 20, and 30% to test antibiofilm in the mid-phase, maturation, and eradication phases. In the mid-phase biofilm, Kratom-derived nanogel extract (KDNE) at a concentration of 30% w/v exhibited significant antibiofilm efficacy against Staphylococcus aureus (SA), with an inhibition percentage of 79.21% ± 0.08; maturation phase of 74.12% ± 0,101; and eradication of 67.25% ± 0.046. KDNE compounds have shown efficacy against Staphylococcus aureus, suggesting their potential as natural antibacterial and antibiofilm agents.


Cite this article:
Deni Setiawan, Samsul Hadi, Nurul Mardiati, Nur Mahdi, Amalia Khairunnisa, Aisya Aqifah, Hasyrul Hamzah, Siswadi. Nanogel Formulations of Kratom (Mitragyna speciosa) Extract: A Promising Antibiofilm agent for Diabetic Ulcer Infections. Research Journal Pharmacy and Technology. 2025;18(11):5216-2. doi: 10.52711/0974-360X.2025.00752

Cite(Electronic):
Deni Setiawan, Samsul Hadi, Nurul Mardiati, Nur Mahdi, Amalia Khairunnisa, Aisya Aqifah, Hasyrul Hamzah, Siswadi. Nanogel Formulations of Kratom (Mitragyna speciosa) Extract: A Promising Antibiofilm agent for Diabetic Ulcer Infections. Research Journal Pharmacy and Technology. 2025;18(11):5216-2. doi: 10.52711/0974-360X.2025.00752   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-14


REFERENCES: 
1.    Jang EJ, Patel R, Patel M. Electrospinning Nanofibers as a Dressing to Treat Diabetic Wounds. Pharmaceutics. 2023; 12: 1. doi:10.3390/pharmaceutics15041144
2.    Li H, Mavumengwana V, Gan RY, et al. Nanoparticles-Attractive Carriers of Antimicrobial Essential Oils. Antibiotics. 2022; 11(108): 1-45. doi:10.3390/antibiotics11010108
3.    Deepigaa M. Antibacterial Resistance of Bacteria in Biofilms. Res J Pharm Technol. 2017; 10(11): 4019. doi:10.5958/0974-360X.2017.00728.4
4.    Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology. 2021; 1(52): 1701-1718. doi:10.1007/s42770-021-00624-x
5.    Pessoa e Costa T, Duarte B, João AL, et al. Multidrug-resistant bacteria in diabetic foot infections: Experience from a portuguese tertiary centre. Int Wound J. 2020; 17(6): 1835-1839. doi:10.1111/iwj.13473
6.    Pushpam AC, Karthik R, Chelvan Y, Ramalingam K, Vanitha MC. Evaluation of the Antibiofilm Properties of Arthrobacter defluvii AMET1677 Strain Isolated from Shrimp Pond Sediment against Marine Biofilm Forming Bacteria. Res J Pharm Technol. 2016; 9(4): 373. doi:10.5958/0974-360X.2016.00067.6
7.    Kumar Bari A, Sandeep Belalekar T, Poojary A, Rohra S. Combination drug strategies for biofilm eradication using synthetic and natural agents in KAPE pathogens. Front Cell Infect Microbiol. 2023; (4): 7. doi:10.3389/fcimb.2023.1155699
8.    Syahida N, Ma N’. Indonesian Journal of Chemical Science Kratom (Mitragyna speciosa): Medicinal Marvel or Menace? Assessing Potency, Risk, and Future Prospect of Herbal Medicine. J Chem Sci. 2024; 13(1). http://journal.unnes.ac.id/sju/index.php/ijcs
9.    Selvi KV, Hemalatha M, Rajeshkumar S. Analysis of bioactive compounds from Spirulina gessneri and studying its Antibacterial activity against wound Infection causing pathogens. Res J Pharm Technol. 2017; 10(6): 1983. doi:10.5958/0974-360X.2017.00347.X
10.    Kishore MY, Chakrabartty I, Kumar Mishra A, et al. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol. 2023; 1(3): 1-30. doi:10.3389/fmicb.2022.1028086
11.    Mukherjee A, Bose S, Shaoo A, Das SK. Nanotechnology based therapeutic approaches: an advanced strategy to target the biofilm of ESKAPE pathogens. Royal Society of Chemistry. 2023; 4(4): 2544-2572. doi:10.1039/d2ma00846g
12.    Ramadan YF; N;, Al-Harbi AI; A, Ahmed E;, et al. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines. 2023; 413(11). doi:10.3390/biomedicines11020413
13.    Umamageswari SSM, Manipriya B, Kalyani M. Evaluation of antibacterial activity of zinc oxide nanoparticles against biofilm producing methicillin resistant Staphylococcus aureus (MRSA). Res J Pharm Technol. 2018; 11(5): 1884. doi:10.5958/0974-360X.2018.00350.5
14.    Sookkhee S, Sakonwasun C, Mungkornasawakul P, Khamnoi P, Wikan N, Nimlamool W. Synergistic Effects of Some Methoxyflavones Extracted from Rhizome of Kaempferia parviflora Combined with Gentamicin against Carbapenem-Resistant Strains of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. MDPI Plants. 2022; 11(3128): 16. doi:10.3390/plants11223128
15.    Kishore Mohanta Y, Chakrabartty I, Kumar Mishra A, et al. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol. 2023; (3): 1-30. doi:10.3389/fmicb.2022.1028086
16.    Varma A, Warghane A, Dhiman NK, et al. The role of nanocomposites against biofilm infections in humans. Front Cell Infect Microbiol. 2023; (2): 1-16. doi:10.3389/fcimb.2023.1104615
17.    Arunachalam K, Krishnan GP, Sethuraman S, et al. Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. MDPI Phatogens. 2023; (270): 1. doi:10.3390/pathogens12020270
18.    Mirghani R, Saba T, Khaliq H, et al. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiol. 2022; 8(3): 240-278. doi:10.3934/microbiol.2022019
19.    Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics. 2023; 12(1). doi:10.3390/antibiotics12010087
20.    Wu X, Wang H, Xiong J, et al. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm. 2024; 7: 100175. doi:10.1016/J.BIOFLM.2023.100175
21.    Mary RNI, Banu N. Inhibition of Antibiofilm Mediated Virulence Factors in Pseudomonas aeruginosa by Andrographis Paniculata. Res J Pharm Technol. 2017; 10(1): 141. doi:10.5958/0974-360X.2017.00031.2
22.    Dewangan D, Ajazuddin, Agrawal P, et al. Formulation and Evaluation of oral reconstitutable Azithromycin Suspension for the treatment of Bacterial Infection. Res J Pharm Technol. 2018; 11(4): 1351. doi:10.5958/0974-360X.2018.00251.2
23.    Karpagam P, Manonmani G, Brindha D. Phytochemical Screening, Antimicrobial Activity and Antimicrobial Finishing of Polyherbal Extract on Nonwoven Wound Dressing. Res J Pharm Technol. 2019; 12(2): 632. doi:10.5958/0974-360X.2019.00112.4
24.    Raffaelli S, Abreo E, Altier N, Vázquez Á, Alborés S. molecules Bioprospecting the Antibiofilm and Antimicrobial Activity of Soil and Insect Gut Bacteria. MDPI Molecules. 2022; 27(2002): 1-13. doi:10.3390/molecules27062002
25.    Abdul-Lateef LA, Hassan E, Taha Abd-Alla Bactash E. Effect of Cranberry on biofilm formation by P. mirabilis isolated from Patients Suffering from Urinary tract Infections. Res J Pharm Technol. 2018; 11(3): 1097. doi:10.5958/0974-360X.2018.00206.8
26.    Ivanov M, Novovi´cnovovi´c K, Maleševi´cmaleševi´c M, et al. Polyphenols as Inhibitors of Antibiotic Resistant Bacteria-Mechanisms Underlying Rutin Interference with Bacterial Virulence. MDPI Pharmaceuticals. 2022; 15(385): 1-21. doi:10.3390/ph15030385
27.    Majnooni MB, Ghanadian SM, Mojarrab M, et al. and Antioxidant Activities of Flavonoids Isolated from Allium colchicifolium Leaves. J Food Biochem. 2023; 1(14): 1-14. doi:10.1155/2023/5521661
28.    Mary RNI, Banu N. Inhibition of biofilm formation in Serratia marcescens by Andrographolide from Andrographis paniculata. Res J Pharm Technol. 2017; 10(3): 789. doi:10.5958/0974-360X.2017.00148.2
29.    Cloudya Panjaitan C, Sari Widyarman A, Amtha R, Erri Astoeti T, Widyarman S. Antimicrobial and Antibiofilm Activity of Cinnamon (Cinnamomum burmanii) Extract on Periodontal Pathogens-An in vitro study. Eur J Dent. 2022; 16(4). doi:10.1055/s-0041-1742125
30.    Shamim A, Ali A, Iqbal Z, et al. Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics. 2023; 12(299): 2-26. doi:10.3390/antibiotics12020299
31.    Tasmia Asma S, Imre K, Morar A, et al. Natural Strategies as Potential Weapons against Bacterial Biofilms. Life MDPI. 2022; 12(1618): 1-35. doi:10.3390/life12101618
32.    Liu M, Wei X, Zheng Z, et al. Recent Advances in Nano-Drug Delivery Systems for the Treatment of Diabetic Wound Healing. Int J Nanomedicine. 2023; (3): 1537-1560. doi:10.2147/IJN.S395438
33.    Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology. 2021; 1(52): 1701-1718. doi:10.1007/s42770-021-00624-x
34.    Bhavani G, P G. Detection of biofilm among clinical isolates of Acinetobacter baumannii by tissue culture plate method (TCP). Res J Pharm Technol. 2016; 9(10): 1635. doi:10.5958/0974-360X.2016.00327.9
35.    Tasmia Asma S, Imre K, Morar A, et al. An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. MDPI Life. 2022; 1(1110). doi:10.3390/life12081110
36.    Kreve S, Reis ACD. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Japanese Dental Science Review. 2021; 57: 85-96. doi:10.1016/j.jdsr.2021.05.003
37.    Letek M, Behrends V, Murugaiyan J, et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics on behalf of the Global AMR Insights Ambassador Network. MDPI Antibiotics. 11(200). doi:10.3390/antibiotics11020200



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available