Author(s):
Nayera Fayez, Fatima Hassouna, Mohsen Ghali, Ahmed Osman
Email(s):
fatima.Hassouna@vscht.cz , ahmed.osman@ejust.edu.eg
DOI:
10.52711/0974-360X.2025.00755
Address:
Nayera Fayez1,2, Fatima Hassouna3, Mohsen Ghali4,5, Ahmed Osman1,6
1Basic and Applied Sciences Institute Egypt-Japan University of Science and Technology (E-JUST), Biotechnology Department, Alexandria, Egypt.
2Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
3Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic.
4Basic and Applied Sciences Institute Egypt-Japan University of Science and Technology (E-JUST), Nanoscience Department, Alexandria, Egypt.
5Department of Physics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt.
6Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
Halophilic organisms possess interesting characteristics including the presence of many bioactive products. However, microbial diversity in salt lakes has not been well studied. Luminescent haloarchaeal carotenoids are well known for their biological activity. Furthermore, owing to their photoluminescence and small size, carbon quantum dots (CQDs) are widely utilized in many biomedical and biotechnological applications. We isolated the first culturable halophilic archaeal species, Haloarcula sp. NF1 from the Abu-Sherouf salt-pool, Siwa, Egypt, and reported the conversion of haloarchaeal carotenoids to CQDs. Organic solvent-extracted carotenoids were hydrothermally converted into two CQDs, designated as GCQDs and YCQDs. The extracted carotenoids and CQDs were characterized using fluorescence and UV-visible spectrophotometry, X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). CQDs were found to be of spherical shape with 2.75nm and 3.75nm mean size for YCQDs and GCQDs, respectively, with high dual emission fluorescence energy on a wide range of excitation and emission wavelengths, encompass a Quantum Yield of 13.3% for YCQDs and 6.5% for GCQDs and both CQDs reveals a bi-exponential fluorescence lifetime decay with first decay values of 3.23ns and 3.35ns for YCQDS and GCQDs. Cytotoxicity was assessed as a preliminary method to detect anticancer activity of the prepared species against normal and breast cancer cell lines, L929 and MDA-MB-231, respectively, using the MTT assay and was found to possess cytotoxic activities against MDA-MB-231 cancer cell lines and good biocompatibility against normal cell lines.
Cite this article:
Nayera Fayez, Fatima Hassouna, Mohsen Ghali, Ahmed Osman. Structural and Biological Characterization of Carotenoids Carbon Quantum Dots from the newly Isolated Haloarcula sp. NF1. Research Journal Pharmacy and Technology. 2025;18(11):5234-4. doi: 10.52711/0974-360X.2025.00755
Cite(Electronic):
Nayera Fayez, Fatima Hassouna, Mohsen Ghali, Ahmed Osman. Structural and Biological Characterization of Carotenoids Carbon Quantum Dots from the newly Isolated Haloarcula sp. NF1. Research Journal Pharmacy and Technology. 2025;18(11):5234-4. doi: 10.52711/0974-360X.2025.00755 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-17
REFERENCES:
1. Elnazer AA. Salman SA. Mohamed YMA et al Siwa Oasis groundwater quality: factors controlling spatial and temporal changes. Environmental Monitoring and Assessment. 2023; 195(1): 61. doi: 10.1007/s10661-022-10646-z.
2. Elsaied H. Soliman T. Siam R et al Differential rRNA gene metabarcoding of prokaryotic consortia in desert athalassohaline and thalassohaline brines. Egyptian Journal of Aquatic Research. 2022; 48(3): 223–231. doi: 10.1016/j.ejar.2022.02.004.
3. Mozaheb N. Arefian E. Aliyan A et al Induction of the antioxidant defense system using long-chain carotenoids extracted from extreme halophilic archaeon, Halovenus aranensis. International Microbiology. 2022; 25(1): 165–175. doi: 10.1007/s10123-021-00198-6.
4. Aglawe S. Gayke A. Murade P et al Different methods of extraction for Red Dye from Capsicum annuum. Research Journal of Science and Technology. 2019; 11(4): 281. doi: 10.5958/2349-2988.2019.00040.8.
5. Grivard A. Goubet I. Duarte-Filho L et al Archaea Carotenoids: Natural Pigments with Unexplored Innovative Potential. Marine Drugs. 2022; 20(8): 524. doi: 10.3390/md20080524.
6. Chaari M. Theochari I. Papadimitriou V et al Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions. Colloids and Surface B: Biointerfaces. 2018; 161: 219–227. doi: 10.1016/j.colsurfb.2017.10.042.
7. Konwar A. Deb A. Kar A et al Dual emission carbon dots from carotenoids: Converting a single emission to dual emission. Luminescence. 2019; 34(8):790–795. doi: 10.1002/bio.3685.
8. Bhave D. Deshpande S. Dabholkar U. Surfactants as Quantum Dots used in Bio-Imaging. Research Journal of Science and Technology. 2018; 10(3):188. doi: 10.5958/2349-2988.2018.00026.8.
9. Hande AV. Maner SS. Jadhav PP et al Quantam Dots and their Medical Importance. Asian Journal of Research in Pharmaceutical Sciences 2016; 95(5): 381–384; doi: 10.52711/2231-5659.2024.00060.
10. Shinde S, Patil A, Gaikwad R. Graphene Quantum Dots: A Pharmaceutical Review. Asian Journal of Pharmaceutical Research. 2022; 341–348; doi: 10.52711/2231-5691.2022.00054.
11. Singh I. A Review on in-Vivo Imaging of Cancer Cells by Bioconjugated Quantum Dots. Asian Journal of Pharmaceutical Research 2018; 8(4): 243-248. doi: 10.5958/2231-5691.2018.00042.4.
12. Patel J. Mota P. Salvi A et al Infrared organic photovoltaic: A review. Research Journal of Engineering and Technology. 2017; 8(2): 159-164. doi: 10.5958/2321-581x.2017.00025.3.
13. Alaqel SI. Abdullah O. Alharbi A et al Guava-fruit based synthesis of carbon quantum dots for spectrofluorometric quantitative analysis of risperidone in spiked human plasma and pharmaceutical dosage forms. RSC Advances. 2023; 13(26): 17765–17774. doi: 10.1039/d3ra02855k.
14. Alsafadi D. Khalili FI. Juwhari H et al Purification and biochemical characterization of photo-active membrane protein bacteriorhodopsin from Haloarcula marismortui, an extreme halophile from the Dead Sea. International Journal of Biological Macromolecules. 2018; 118: 1942–1947. doi: 10.1016/j.ijbiomac.2018.07.045.
15. Ausubel FM. Brent R. Kingston RE. Moore DD. Seidman JG. Smith JA. Struhl K. Preparation and Analysis of DNA. In Current Protocols in Molecular Biology.3rd edition. 2003; 58-59. John Wiley & Sons, Inc.
16. Alvares JJ. Furtado IJ. Characterization of multicomponent antioxidants from Haloferax alexandrinus GUSF-1 (KF796625). 3 Biotech. 2021; 11(2): 1-12. doi: 10.1007/s13205-020-02584-9.
17. Juha H. Amali F. Effect of Boiling on Carotenoids content of Pumpkin available in Damascus, Syria. Research Journal of Pharmacy and Technology. 2021; 14(11): 5642–5646. doi: 10.52711/0974-360X.2021.00981.
18. Veerichetty V. Shalini MB. Sadhasivama B et al Extraction of dye from Ixora coccinea and Beta vulgaris for Eco-dyeing. Research Journal of Engineering and Technology. 2017; 8(4): 378. doi: 10.5958/2321-581x.2017.00067.8.
19. Ayad MM. Abdelghafar ME. Torad NL et al Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor. Chemosphere. 2023; 312(1): 137031. doi: 10.1016/j.chemosphere.2022.137031.
20. Tiron CE. Luta G. Butura M et al NHF-derived carbon dots: prevalidation approach in breast cancer treatment. Scientific Reports. 2020; 10(1): 12662. doi: 10.1038/s41598-020-69670-z.
21. Desai SA. Sukhramani PS. Suthar MP et al Biological Cytotoxicity Evaluation of Sulfonamide Derivatives as Anti-Lung and Anti-Breast Cancer Activity. Asian Journal of Research in Chemistry. 2011; 4(4):671–677.
22. Jose J. Charyulu RN. Nayak P. In vitro cytotoxicity studies of pamam dendrimer with an antifungal agent. Research Journal of Pharmacy and Technology. 2016; 9(1): 17–19. doi: 10.5958/0974-360X.2016.00004.4.
23. Bakier YM. Ghali M. Sami M et al Highly Luminescent Un-Doped Carbon Nano-Dots Driven from Folic Acid and Passivated by Polyethylene Glycol. Materials Today: Proceedings. 2020; 1800–1803. doi: 10.1016/j.matpr.2020.05.057.
24. Verma DK. Chaudhary C. Singh L et al Isolation and Taxonomic Characterization of Novel Haloarchaeal Isolates From Indian Solar Saltern: A Brief Review on Distribution of Bacteriorhodopsins and V-Type ATPases in Haloarchaea. Frontiers in microbiology. 2020; 11: 554927. doi: 10.3389/fmicb.2020.554927.
25. Jehlicka J. Edwards HGM. Oren A. Raman Spectroscopy of Microbial Pigments. Applied and environmental microbiology. 2014; 80(11): 3286–3295. doi: 10.1128/AEM.00699-14.
26. Kumar R. Sahu G. Saxena SK et al Qualitative Evolution of Asymmetric Raman Line-Shape for NanoStructures. Silicon. 2014; 6(2):117–121. doi: 10.1007/s12633-013-9176-9.
27. Zhang Y. Cai L. Fu Z et al Facile and Green Synthesis of Carbon Dots from Melia Azedarach Leaves for pH Sensing and Cell Imaging. Journal of Fluorescence. 2023; 33(5):1841–1851. doi: 10.1007/s10895-023-03188-1.
28. Amer WA. Rehab AF. Abdelghafar ME et al Green synthesis of carbon quantum dots from purslane leaves for the detection of formaldehyde using quartz crystal microbalance. Carbon. 2021; 179:159–171. doi: 10.1016/j.carbon.2021.03.047.
29. Zhang Y. Chen Y. Bai X et al Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice. Molecules. 2023; 28(4). doi: 10.3390/molecules28041830.
30. D’souza SL. Chettiar SS. Koduru JR et al Synthesis of fluorescent carbon dots using Daucus carota subsp. sativus roots for mitomycin drug delivery. Optik. 2018; 158: 893–900. doi: 10.1016/j.ijleo.2017.12.200.
31. Meng Y. Wu L. Zhao J et al Facile synthesis of long-wavelength emission carbon dots for hypochlorite sensing and intracellular pH imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2024; 322:124767. doi: 10.1016/j.saa.2024.124767.
32. Khan WU. Wang D. Zhang W et al High Quantum Yield Green-Emitting Carbon Dots for Fe(ІІІ) Detection, Biocompatible Fluorescent Ink and Cellular Imaging. Scientific Reports. 2017; 7(1): 1–9. doi: 10.1038/s41598-017-15054-9.
33. Kumar VB. Mirsky SK. Shaked NT et al High Quantum Yield Amino Acid Carbon Quantum Dots with Unparalleled Refractive Index. ACS Nano 2024; 18(3): 2421–2433. doi: 10.1021/acsnano.3c10792
34. Anpalagan K. Karakkat JV. Jelinek R et al A Green Synthesis Route to Derive Carbon Quantum Dots for Bioimaging Cancer Cells. Nanomaterials. 2023; 13(14). doi: 10.3390/nano13142103.
35. Shinde VR. Khatun S. Thanekar AM et al Lipid-coated red fluorescent carbon dots for imaging and synergistic phototherapy in breast cancer. Photodiagnosis and Photodynamic Therapy. 2023; 41: 103314. doi: 10.1016/j.pdpdt.2023.103314.
36. Havrdová M. Urbančič I. Bartoň Tománková K et al. Self‐targeting of carbon dots into the cell nucleus: Diverse mechanisms of toxicity in NIH/3T3 and l929 cells. International journal of molecular sciences. 2021; 22(11): 5608; doi: 10.3390/IJMS22115608/S1.
37. Smrithi SP. Kottam N. Muktha H et al Carbon dots derived from Beta vulgaris: evaluation of its potential as antioxidant and anticancer agent. Nanotechnology. 2021; 33(4): 045403. doi: 10.1088/1361-6528/AC30F1.
38. Wang L. Gu D. Su Y et al Easy Synthesis and Characterization of Novel Carbon Dots Using the One-Pot Green Method for Cancer Therapy. Pharmaceutics. 2022; 14(11): 2423. doi: 10.3390/PHARMACEUTICS14112423/S1.
39. Renugadevi K. Valli Nachiyar C. Sunkar S. Cytotoxicity of metanilic acid and its degradation products. Res J Pharm Technol 2016;9(4):401–403; doi: 10.5958/0974-360X.2016.00073.1.
40. Pappachen LK, Sreelakshmi KS. Phytochemical screening and In vitro cytotoxicity studies of mussaenda frondosa linn leaves. Research Journal of Pharmacy and Technology. 2017; 10(12): 4227–4230. doi: 10.5958/0974-360X.2017.00774.0.