Author(s): Rabiaa Harrache, Ahlem Karbab, Riadh Bourzami, Noureddine Charef, Lekhmici Arrar

Email(s): ahlem.karbab@univ-setif.dz , charefnr@univ-setif.dz

DOI: 10.52711/0974-360X.2025.00740   

Address: Rabiaa Harrache1,2, Ahlem Karbab1*, Riadh Bourzami3, Noureddine Charef1*, Lekhmici Arrar1
1Laboratory of Applied Biochemistry, Faculty of Nature and Life Science, Ferhat Abbas University, Setif-1, 19000 Algeria.
2Department of Process Engineering, Ferhat Abbas University, Setif-1, 19000 Algeria.
3Research Unit on Emerging Materials, Ferhat Abbas University, Setif-1, 19000 Algeria.
*Corresponding Author

Published In:   Volume - 18,      Issue - 11,     Year - 2025


ABSTRACT:
In this investigation, bis-ketone 1,3-Bis(2-acetylphenoxy)-2-propanol (Bis-AcPh) was synthetized by Willamson ether reaction via the condensation between 1,3-dichloropropanol and 2’hydroxyacetophenone. Structural elucidation of the product was established using different spectroscopic models IR, UV, as well as 1H-NMR and 13C-NMR. This compound was screened for their antioxidant, cytotoxicity, and both in vitro and in vivo anti-inflammatory activities, and through the density functional theory some theoretical studies were carried out. The antioxidant effect was assessed by performing DPPH radical scavenging, and reducing power method. In vitro anti-inflammatory activity was estimated using the egg albumin denaturation test, while the topical anti-inflammatory effect was investigated through xylene and croton oil-induced ear oedema in mice model. Results demonstrate that the molecule exhibited moderate scavenging activity than the references antioxidants BHT and ascorbic acid, whereas it displayed a potent in vitro anti-inflammatory activity at the concentration of 2.5 mg/mL with values of 95%. In topical anti-inflammatory activity, the compound exhibited an excellent anti-inflammatory in xylene as well as in croton oil-induced ear edema in mice with a percentage of 86.15 % and 71.28%, respectively. Finally, noteworthy hemolytic degree towards human electrolytes (RBCs) was less than 2.00 %.


Cite this article:
Rabiaa Harrache, Ahlem Karbab, Riadh Bourzami, Noureddine Charef, Lekhmici Arrar. Cytotoxicity, Antioxidant and Anti-inflammatory activities of Bis- ketone 1,3-Bis (2-acetylphenoxy)-2-propanol: An In silico, In vitro and In vivo studies. Research Journal Pharmacy and Technology. 2025;18(11):5128-6. doi: 10.52711/0974-360X.2025.00740

Cite(Electronic):
Rabiaa Harrache, Ahlem Karbab, Riadh Bourzami, Noureddine Charef, Lekhmici Arrar. Cytotoxicity, Antioxidant and Anti-inflammatory activities of Bis- ketone 1,3-Bis (2-acetylphenoxy)-2-propanol: An In silico, In vitro and In vivo studies. Research Journal Pharmacy and Technology. 2025;18(11):5128-6. doi: 10.52711/0974-360X.2025.00740   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-2


REFERENCES:
1.    Calkilic NM. Alici H. Direkel Ş. et Tahtaci H. Synthesis, Characterization, Theoretical Analyses, and Investigation of Their Biological Activities of Acetovanillone-Derived Novel Benzyl Ethers. Polycyclic Aromatic Compounds. 2021; 42(18): 5671–5695. doi.org/10.1080/10406638.2021.1950782.
2.    Mamedov IG. Farzaliyeva AE. Mamedova YV. Hasanova NN. Bayramov MR. and Maharramov AM. Antibacterial and antifungal activities of some hydroxyacetophenone derivatives. Indian Journal of Chemistry. 2018; 57(1B): 310-314.
3.    Er M. Ustabaş R. Çoruh U. Sancak K. and Vázquez-López E. Synthesis and Characterization of Some New Tetraaldehyde and Tetraketone Derivatives and X-ray Structure of 1,1'-(4,4'-(2-(1,3-bis(4-Acetylphenoxy)propan-2-ylidene)propane-1,3-diyl). Int. J. Mol. Sci.2018; 9: 1000-1007. DOI: 10.3390/ijms9061000.
4.    Soares P. Fernandes C. Chavarria D. and Borges F. Microwave-Assisted Synthesis of 5 Phenyl-2-hydroxyacetophenone derivatives by a Green Suzuki Coupling Reaction. Journal of Chemical Education. 2014; 92(13): 575–578. doi.org/10.1021/ed400498w.
5.    Diamanti A. Ganase Z. Grant E. Armstrong A. Piccione PM. Rea A M., Richardson J., Galindo A. and Adjiman CS. Mechanism, kinetics and selectivity of a Williamson ether synthesis: elucidation under different reaction conditions. Reaction Chemistry and Engineering. 2012; 6:1195-1211. DOI: 10.1039/d0re00437e.
6.    Lopez JJ. and Pérez EG. New convergent one pot synthesis of amino benzyl ethers bearing a nitrogen-containing bicycle. Synthetic Communications. 2019;49(15):715-723. doi.org/10.1080/00397911.2019.1568498.
7.    Jursic B. Synthetic application of micellar catalysis. Williamson’s synthesis of ethers. Tetrahedron. 1988;44(121): 6677-6680.
8.    Khandar AA. Yazdi Sah. Khatamian M. McArdle P. and Zarei SA. Synthesis, characterization and structure of nickel(II) complexes of a16-membered mixed-donor macrocyclic Schiff base ligand, potentially hexadentate, bearing two pendant alcohol functions. Polyhedron. 2007; 26 :33-38. doi:10.1016/j.poly.2006.07.022.
9.    Ocak M. Alp H. Kantekin H. Karadeniz H. and Ocak U. Ion-pair extraction of transition metal cations from aqueous media using novel N2O2. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2008; 60: 17–24. DOI 10.1007/s10847-007-9347-7.
10.    Kohn W. Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review.1965; 140 (4A). DOI 10.1007/s10847-007-9347-7.
11.    Bourzami R. Ouksel L and Chafai N. Synthesis, spectral analysis, theoretical studies, molecular dynamic. Journal of Molecular Structure. 2019; 1195: 839-849. https://doi.org/10.1016/j.molstruc.2019.06.012.
12.    Bourzami R. Chenefa AitYoucef H. Hamdouni N. and. Sebais M. Synthesis, crystal structure, vibrational spectra and thermal properties of novel. Chemical Physics Letters. 2018; 711: 220-226. https://doi.org/10.1016/j.cplett.2018.08.002.
13.    Ouksel L. Bourzami R. Hamdouni N. and Boudjada A. Synthesis, supramolecular structure, spectral properties and correlation between nonlinear optic, thermochemistry and thermal behavior of an α-Hydroxyphosphonate acid ester, dual experimental and DFT approaches. Journal of Molecular Structure. 2020; 1229:129792-129803. https://doi.org/10.1016/j.molstruc.2020.129792.
14.    Chermette H. Chemical Reactivity Indexes in Density Functional Theory. Journal of Computational Chemistry. 1999.20:129-154.
15.    Mokhnache K. Madoui S. Khither H. Soltani EK. Charef N. and Arrar L. Synthesis, Characterization, Hydrolytic Cleavage, and Biological Activity studies of 2-[(1e)-N-{2-[(2-{(Z)-[1-(2-Hydroxyphenyl)Ethylidene] Amino}Ethyl)Amino]Ethyl} Ethanimidoyl]Phenol. Journal of Drug Delivery & Therapeutics. 2019; 9(5-s): 25-29. http://dx.doi.org/10.22270/jddt.v9i5-s.3621.
16.    Charef N. Sebti F. Arrar L. Djarmouni M. Boussoualim N. Baghiani A. Khennouf S. Ourari A. AlDamen MA. Mubarak MS. and Peters DG. Synthesis, characterization, X-ray structures, and biological activity of some metal complexes of the Schiff base 2,20(propane-3,1-diyl))bis(azanylylidene))bis (methanylylidene))diphenol. Polyhedron. 2015; 85:450-456. http://dx.doi.org/10.1016/j.poly.2014.09.006 
17.    Karbab A. Charef N. Abu Zarga MH. Qadr MI and Mubarak MS. Ethno-medicinal documentation and anti-inflammatory effects of n-butanol extract and of four compounds isolated from the stems of Pituranthos scoparius: An in vitro and in vivo investigation. Journal of Ethnopharmacology. 2021; 267: 113488. https://doi.org/10.1016/j.jep.2020.113488.
18.    Mokhnache K. Karbab A. Madoui S. Khither H. Soltani EK. Bououden W. Madani S. and Charef N.Topical anti-inlammatory and hydrogen peroxide scavenging evaluation of nicotinamide:description in the early stages of anti-inflammatory drug discovery process,with and without the use of animals. Heterocyclic Letters. 2021; 11(14): 507-514.
19.    Karbab A. Mokhnache K. Ouhida S. Charef N. Djabi F. Arrar L. and Mubarak MS. Anti-inflammatory, analgesic activity, and toxicity of Pituranthos scoparius stem extract: An ethnopharmacological study in rat and mouse models. Journal of Ethnopharmacology. 2020; 258: 112936. https://doi.org/10.1016/ j.jep.2020.112936
20.    Zhang B. Yang X. Wang Y. et Zhai G. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride. Materials Science and Engineering: C. 2017; 75: 198-206. http://dx.doi.org/10.1016/j.msec.2017.02.048
21.    Spackman MA. et Jayatilaka D. Hirshfeld surface analysis. CrystEngComm. 2009; 11: 19-32. DOI: 10.1039/b818330a 
22.    Bendia S. Bourzami R. Weiss J. and Ouari K. Structural investigation of the catalytic activity of Fe(III) and Mn(III) Schiff base complexes. Polyhedron. 2021; 202: 115206. https://doi.org/10.1016/j.poly.2021.115206
23.    Bellal Y. Keraghel S. Benghanem F. Toukal L. Sığırcık G. Bourzami R. and Ourari A. A New Inhibitor for Steel Rebar Corrosion in Concrete: Electrochemical and Theoretical Studies. International Journal of Electrochimical Science. 2018;13:7218 – 7245. https://doi.org/10.20964/2018.07.91 
24.    Nokhbeh SR. Gholizadeh M. Salimi A. and Sparkes HA. Crystal structure, characterization, Hirshfeld surface analysis and DFT studies of two [propane 3-bromo-1-(triphenyl phosphonium)] cations containing bromide (I) and tribromide (II) anions: The anion (II) as a new brominating agent for unsaturated compoun. Journal of Molecular Structure. 2019; 1195: 542-554. https://doi.org/10.1016/j.molstruc.2019.05.127
25.    Zhou Z. and Parr RG. Activation Hardness: New Index for Describing the Orientation of Electrophilic Aromatic Substitution. Journal of the American Chemical Society. 1990; 112: 5720-5724. https://doi.org/10.1021/ja00171a007
26.    Fellahi Z. Chenaf-Ait youcef H. Hannachi D. Djedouani A. Ouksel L. François M. Fleutot S. Bourzami R. Synthesis, X-ray crystallography, Hirshfeld surface analysis, thermal properties and DFT/TD-DFT calculations of a new material hybrid ionic (C10H18N2O). Journal of Molecular Structure. 2021; 1244:130955. https://doi.org/10.1016/j.molstruc.2021.130955 
27.    Nazari F. and Zali FR. Density functional study of the relative reactivity of the carbonyl group in substituted cyclohexanone. Journal of Molecular Structure: Theochem. 2007; 817:11-18. doi:10.1016/j.theochem.2007.04.013
28.    Venkateswarlu K. Kumar MP. Rambabu A. Vamsikrishna N. Daravath S. Rangan K. and Shivaraj. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6- ethoxyphenol Schiff base. Journal of Molecular Structure. 2018; 1160: 198-207. DOI : 10.1016/j.molstruc.2018.02.004
29.    Chew. KJ. Shivkanya. F Vetriselvan S. Mahendran S. Kathiresan V.S Saminathan. K. Yuan Seng .W et al . Phytochemical screening and antioxidant activity of Cananga odorata extract. Research Journal of Pharmacy and Tech. 2022; 15(13): 1230-1234. DOI: 10.1039/c4ra13315c
30.    Nimse SB. Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. Royal Society of Chemistry. 2015; 5:27986. DOI 10.1007/s00044-012-0413-3
31.    Narsinghani T. Sharma MC. and Bhargav S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Medicinal Chemistry Research. 2013; 22: 4059–4068. http://dx.doi.org/10.1016/j.ejmech.2015.06.026
32.    Joshi H. Pagare M. Patil L. Kadam V.In–Vitro Antioxidant Activity of Ethanolic Extract of Leaves of Buchanania lanzan Spreng. Research J. Pharm. and Tech. 2011; 4(16): 920-924. 
33.    Yehye WA. Abdul Rahman N. Ariffin A. Bee Abd Hamid SB. Alhadi AA. Kadir FA. Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry. 2015; 101: 295-312. DOI: 10.2147/DDDT.S364746
34.    Gijsman P. Polymer Stabilization .Handbook of Environmental Degradation of Materials (Second Edition), Oxford, William Andrew Publishing. 2012: 673-714. DOI: 10.5455/ jice.20160731025522
35.    Shokhan H. J and Twana S. Design, Synthesis, and Anti-Inflammatory Activity of Some Coumarin Schiff Base Derivatives: In silico and in vitro Study. Drug Design, Development and Therapy. 2022; 16: 2275-2288. DOI: 10.1080/10406638.2021.1919156
36.    Izzati Osman N. Norrizah JS. Awal A. Nurul Athirah MA. Rezali NI. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-infl ammatory use in gouty arthritis. Journal of Intercultural Ethnopharmacology. 2016; 5(14): 343-349. DOI: 10.5455/jice.20160731025522
37.    Yan R. Huang X. Deng X. Song M. Synthesis and Activity Evaluation of Some Pyrazole–Pyrazoline Derivatives as Dual Anti Inflammatory and Antimicrobial Agents. Polycyclic Aromatic Compounds. 2022; 42(18): 5006-5019. DOI: 10.1080/ 10406638.2021.1919156
38.    Gonçalves DS. de S. Melo SM. Jacomini AP. da Silva MJV. Pianoski KE. Ames F Q., Aguiar R. P.Oliveira AF. Volpato H. Bidóia DL. Nakamura CV. Bersani-Amado CA. Back DF. Moura S. Paula FR. Rosa FA. Synthesis of novel 3,5,6-trisubstituted 2-pyridone derivatives and evaluation for their anti-inflammatory activity. Bioorganic & Medicinal Chem. 2020; 28(112): 115549. doi.org/10.1016/j.bmc.2020.115549
39.    Sangchart P. Panyatip P. Damrongrungruang T. Priprem A. Mahakunakorn P Puthongking P. Anti-Inflammatory Comparison of Melatonin and Its Bromobenzoylamide Derivatives in Lipopolysaccharide (LPS)-Induced RAW 264.7 Cells and Croton Oil-Induced Mice Ear Edema. Molecules. 2021; 26(114): 4285. doi.org/10.3390/molecules26144285
40.    Saraiva R A. Araruna MKA. Oliveira RC. Menezes KDP. Leite GO. Kerntopf MR. Costa JGM. Rocha JBT. Tomé AR. Campos AR. and Menezes IRA. Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agents. Journal of Ethnopharmacology. 2011; 136(13): 504-510. doi:10.1016/j.jep.2010.07.002 
41.    Rao E. Singh P. Li Y. Zhang Y. Chi YI. Suttles J. Li B. Targeting epidermal fatty acid binding protein for treatment of experimental autoimmune encephalomyelitis. BMC Immunology. 2015; 16(128): 1-12. DOI 10.1186/s12865-015-0091-2
42.    de Gonzalo G. and Alcántara AR. Recent Developments in the Synthesis of β-Diketones. Pharmaceuticals. 2021; 14(110): 1043. doi.org/10.3390/ph14101043
43.    Carlson RP. O'neill-Davis L. Chang J. Lewis AJ. Modulation of mouse ear edema by cyclooxygenase and fipoxygenase inhibitors and other pharmacologic agents. Agents and Actions. 1985; 17(12): 197–204. doi.org/10.1007/BF01966592
44.    Ketan A. and Dannenfelser RM. In Vitro Hemolysis: Guidance for the Pharmaceutical Scientist. Journal of Pharmaceutical Sciences. 2006; 95(16): 1173-1176. DOI: 10.1002/jps.20627
45.    Mo’ath AA. Hassan Al-Akhras MA. Suhaimi Jaafar M. Bououdina M. Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology. 2017; 45(11): 98-107. DOI : 10.3109/21691401.2015.1129628

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available