Author(s):
Imas Solihat, Siti Syarifah Amalia, Lilis Sulistiawaty, Widya Puspantari
Email(s):
lilis.anira@gmail.com
DOI:
10.52711/0974-360X.2025.00765
Address:
Imas Solihat1*, Siti Syarifah Amalia1, Lilis Sulistiawaty2, Widya Puspantari3
1Department of Food Nanotechnology, Politeknik AKA Bogor, Jalan Pangeran Sogiri, Tanah Baru, Bogor 16154, Indonesia.
2Department of Chemical Analysis, Politeknik AKA Bogor, Jalan Pangeran Sogiri, Tanah Baru, Bogor 16154, Indonesia.
3Research Center for Agroindustry, National Research and Innovation Agency, KST BJ Habibie Serpong, South Tangerang 15314, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
Avocado Seed Kombucha is a functional beverage that is produced through the process of fermentation between sugar, avocado seeds extract and SCOBY (Symbiotic culture of bacteria and yeast). This study was conducted by 2 variables, concentrations of avocado seeds (2 and 5% b/v) and fermentation time (0, 4, 8, 12 days). The purpose of this study is to determine the appropriate formula for the kombucha drinks from avocado seeds, physicochemical changes, sensory, and toxicity test during fermentation process. The results of this study shows that the longer fermentation time, the higher improvement on physical properties such as the color of kombucha drinks are darker, more acidic, and the weight of nata increased. Changes in chemical properties that occur during fermentation are the level of acidity, antioxidant and tannin values decreases while the total phenolic value and the alcohol score increase. Toxicity test with BSLT Method shows that Kombucha drinks with the concentration of 2% are toxic for fermentation on 12 days, and at a concentration of 5 % are toxic in fermentation for 8 and 12 days. The results of hedonic test shows that the most preferred kombucha is with an avocado seeds composition of 2% with fermentation time of 12 days.
Cite this article:
Imas Solihat, Siti Syarifah Amalia, Lilis Sulistiawaty, Widya Puspantari. Avocado Seed Kombucha: Comprehensive Physicochemical, Sensory Profile and Toxicity Test during Fermentation Process. Research Journal Pharmacy and Technology. 2025;18(11):5308-4. doi: 10.52711/0974-360X.2025.00765
Cite(Electronic):
Imas Solihat, Siti Syarifah Amalia, Lilis Sulistiawaty, Widya Puspantari. Avocado Seed Kombucha: Comprehensive Physicochemical, Sensory Profile and Toxicity Test during Fermentation Process. Research Journal Pharmacy and Technology. 2025;18(11):5308-4. doi: 10.52711/0974-360X.2025.00765 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-27
REFERENCES:
1. Lopez-Cobo A. Gomez Caravaca AM. Pasini F. Caboni MF. Segura Carretero A. Fernandez Gutierrez A. HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by products of avocado. Lebensmittel-Wissenschaft und-Technologie-Food Science and Technology. 2016; 73: 505-513.
2. Avhad MR. Marchetti JM. Temperature and pretretment effects on the dryng of hass avocado seeds. Biomass and Bioenergy. 2015; 83: 467-473.
3. Hiwot T. Determination of oil and biodiesel content, physicochemical properties of the oil extracted from avocado seed (persea americana) grown in wonango and dilla (gedeo zone), southern ethiopia. Chemistry International. 2017; 3(3): 220-23.
4. Araujo RG. Rosa M. Jasso R. Ruiz HA. Pintado MME. Aguilar CNA. Avocado by-products: nutritional and functional properties (review article). Trends in Food Science and Technology. 2018; 80:51-60.
5. Chaundhary P. Khamar J. Sen DJ. Avocado: The holistic source as a natural doctor. World J. Pharm. Res. 2015; 4: 748-761.
6. Lacerda LG. Da Silva Carvalho Filho MA. Bauab T. Demiate IM. Colman TAD. Andrade MM P. The effect of heat-moisture treatment on avocado starch granules: theermoanalytical and structural analysis. Journal of thermal analysis and colorimetry. 2015; 120(1): 387-393.
7. Agnieszka K. Karamac M. Estrella I. Hernandez T. Bartolome B. Dykes GA. Phenolic compound profiles and antioxidant capacity of persea americana mill, peels and seeds of two varieties. Journal of Agricultural and Food Chemistry. 2012; 60: 4613-4619.
8. Maitera ON. Osemeahon SA. Barnabas HL. Proximate and elemental analysis of avocado fruit obtained from taraba state, nigeria. Indian Journal of Science and Technology. 2014; 2(2): 67-73.
9. Wang W. Bostic TR. Gu L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chemistry. 2010; 122(4): 1193-1198.
10. Sudhasupriya P. Begam AS. Rajeshkumar S. Screening for antioxidant and antimicrobial activity of seed extract of avocado pear. Research J. Pharm and Tech. 2017; 10(6).
11. Rao USM. Babujanarthanam R. Arirudran B. Clinical evaluation to assess the efficacy of ethanolic extract of avocado fruit on diabetic dyslipidemia studied in stz-inducced experimental albino rats. Asian J. Research Chem.. 2011; 4 (7).
12. Jayabalan R. Chen PN. Hsieh YS. Prabhakaran K. Pitchai P. Marimuthu S. Thangaraj P. Swaminathan K. Yun SE. Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells-characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin. Indian Journal of Biotechnology. 2011; 10: 75-82.
13. Cardoso RR. Neto RO. Thomaz C. D’Almeida S. Nascimento TP. Pressete CG. Azevedo L. Martino HS. Cameron LC. Ferreira MS. Barros FA. Kombuchas from green and black teas have different phenolic profile, ehich impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International. 2019.
14. Ram MS. Anju B. Pauline T. Prasad D. Kain AK. Mongia SS. Sharma SK. Singh B. Singh R. Ilavazhagan G. Kumar D. Selvamurthy W. Effect of kombucha tea on chromate (vi)-induced oxidative stress in albino rats. J.Ethnopharmacol. 2000; 71: 235-240.
15. Endrawat S. Artanti N. Hanafi M. Antioxidant activity and compounds identification of sauropus androgynus (l.) mer. and moringa oleifera lam leaves combination fermented with kombucha consortium. Research J. Pharm and Tech. 2022; 15(11).
16. Aloulou A. Hamden K. Elloumi D. Ali M B. Hargafi K. Jaoudi B. Ayadi F. Elfeki A. Ammar E. Hypoglycemic and antilipidemic properties of kumbucha tea in alloxan induced diabetic rats. bmc comlement. Oh. Altern, Med. 2012; 12: 63-71.
17. Mamatha A. Brine shrimp lethality test of andrographis paniculate. Research J. Pharm and Tech. 2014; 7(7).
18. Nurhayati. Yuwanti S. Urbahillah A. Karakteristik fisikokimia dan sensori kombucha cascara (kulit kopi ranum). J. Teknologi dan Industri Pangan. 2020; 31(1): 38-49. doi:10.6066/jtip.2020; 31.1.38.
19. Bayu MK. Nurwantoro. Risqiati H. Analisis total padatan terlarut keasaman kadar lemak dan tingkat viskositas pada kefir optima dengan lama fermentasi yang berbeda. J Teknol Pangan. 2017; 1: 33-38.
20. Fatimura M. Daryanti. Santi. Pembuatan biodiesel dari minyak jelantah bekas rumah makan dengan variasi penambahan katalis koh pada proses transesterifikasi. Jurnal Kelautan Tropis. 2016; 21(2): 137-144.
21. Ningrum SK. Toifur M. Penentuan viskositas gula menggunakan metode vessel terhubung viscosimeter berbasis video based laboratory dengan software tracker. JRKPF UAD. 2014; 1(2): 57-62
22. Azizah N. Al-Baari AN. Mulyani S. Pengaruh lama fermentasi terhadap kadar alkohol, pH dan produksi gas pada proses fermentasi bioethanol dari whey dengan substitusi kulit nanas. J Aplikasi Teknologi Pangan. 2012; 1: 72-77.
23. Bhusari SI. Desai VD. Nalawade ML. Wadkar SS. Ghosh JS. Fermentation and characterization of wine from fruits of phoenix dactylifera using saccharomyces cerevisae ncim3495. Int Food Res J. 2013; 20: 3411-3415.
24. Yangthong M. Towatana NH. Phromkunthong W. Antioxidant activities of four edible seaweeds from the southern coast of thailand. Plant Foods Hum Nutr. 2009; 64(3): 218-223.
25. Sedjati S. Supriyantini E. Ridlo A. Soenasrdjo N. Santi VY. Kandungan pigmen, total fenolik dan aktivitas antioksidan sargassum sp. Jurnal Kelautan Tropis. 2018; 21(2): 137-144.
26. Herwin. Kosman R. Fitriani. Analisis kadar alkohol produk kombucha daun permot (passiflora foetida l.) asal makassar sulawesi selatan secara kormatografi gas.as-syifaa. 2013; 05(02): 112-118.
27. Mutmainnah N. Chadijah S. Qaddafi M. penentuan suhu dan waktu optimum penyeduhan batang teh hijau (camelia sinensis l.) terhadap kandungan antioksidan kafein, tannin dan katekin. Lantanida Journal. 2018; 6(1): 1-102.
28. Soekarta. Budidaya Buah. Jakarta: Baratha Karya Aksara. 1985.
29. De Garmo. Sullivan EDG. Canada JR. Engineering Economis Mc Millan Publishing Company. New York. 1984.
30. Patil SB. Magdum CS. Determination of lc50 values of extract of euphorbia hirta linn and euphorbia neriifolia linn using brine shrimp lethality assay. Asian J. Research Chem. 2011; 1(2): 42-43.
31. Braguini WL. Pires NV. Alves BB. Phytochemical analysis, antioxidant properties and brine shrimp lethality of unripe fruits of solanumviarum. J Young Pharm. 2018; 10: 159–163.
32. Czaja W. Krystynowicz A. Bielecki S. Brown R M. Microbial cellulose the natural power to heal wounds. Biomaterials. 2006; 27(2):145-15.
33. Naik YK. Khare A. Choudhary PL. Goel BK. Shrivastava A. Studies on physicochemical and sensory characteristics of whey based watermelon beverage. Asian J. Research Chem. 2009; 2(1).
34. Sarkaya P. Akan E. Kinik O. Use of kombucha culture in the production of fermented dairy beverages. Food Science and Technology. 2020.
35. Velicanski AS. Cvetkovic D. Saponjac VT. Vulic J. Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (melissa officinalis l.) tea with symbiotic consortium of bacteria and yeasts. Food Technol. Biotechnol. 2014; 52(4): 40–42. https://doi.org/10.17113/ftb.52.04.14.3611.
36. Chu S. Chen C. Effect of orogins and fermentation time on antioxidant activities of kombucha. food chemistry. 2016; 98: 502-507.
37. Cardoso RR. Neto RO. Thomaz C. D’Almeida S. Nascimento TP. Pressete CG. Azevedo L. Martino HS. Cameron LC. Ferreira MS. Barros FA. Kombuchas from green and black teas have different phenolic profile, ehich impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International. 2019.
38. Hur SJ. Lee SY. Kim YC. Choi I. Kim GB. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry. 2014; 160: 346-356.
39. Tiwari P. Patel RK. Estimation of total phenolics and flavonoids and antioxidant potential of ashwagandharista prepared by traditional and modern methods. Asian J. Pharm. Ana. 2013; 3(4): 147-152.
40. Goh WN. Rosam A. Kaur A. Fazilah AA. Bhat R. Fermentation of black tea broth (kombucha): I. Effects of sucrose concentration and fermentation time on yield of microbial cellulose. 2012.
41. Chakravorty S. Semantee B. Antonis C. Writachit C. Debanjana B. Ratan G. Kombucha tea fermentation: Microbial and biochemical dynamics. Int J Food Microbiol. 2016; 220: 63-72. doi:10.1016/j.iljfoodmicro.2015.12.015.
42. Talebi F. Ghorbani S. Chan W.F. et al. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation. 2017; 14: 55. https://doi.org/10.1186/s12974-017-0832-7
43. Villareal SA. Beaufort S. Bouajila J. Souchard JP. Taillandier P. Understanding kombucha tea fermentation: A review. Journal of Food Science. 2018; 83(3): 580-588.
44. Vijayaraghavan R. Singh M. Rao PV. Bhattacharya R. Kumar P. Sugendran K. Subacute (90days) oral toxicity studies of kombucha tea. Biomedical and Environmental Science. 2000; 13(4): 293-299.
45. Saranya A. Nithya S. Assessment of Heavy Metal Induced Organ Toxicity in marketed Ayurvedhic Formulation and Report its LD50 value with Brine Shrimp Lethality Assay. Research Journal of Pharmacy and Technology. 2017; 10(1): 263-268.
46. Ningdyah AW. Alimuddin AH. Jayuska A. Uji Toksisitas Dengan Metode BSLT (Brine Shrimp Lethality Test) Terhadap Hasil Fraksinasi Ekstrak Kulit Buah Tampoi (Baccaurea macro carpa). JKK. 2015: 4(1): 75-8.
47. Putri MKD. Pringgenies D. Radjasa OK. Uji Fito kimia Dan Toksisitas Ekstrak Kasar Gastropoda (Telescopium telescopium) Terhadap Larva Artemia salina. Journal Of Marine Research. 2012; 1(2): 58-66.