Author(s):
Larisa V. Limareva, Pavel V. Iliasov, Alexander A. Gidaspov, Vladimir A. Zalomlenkov, Aleksey S. Sustretov, Vanda V. Bogush, Viktoriya V. Rossinskaya
Email(s):
Email ID Not Available
DOI:
10.52711/0974-360X.2025.00742
Address:
Larisa V. Limareva, Pavel V. Iliasov, Alexander A. Gidaspov, Vladimir A. Zalomlenkov, Aleksey S. Sustretov, Vanda V. Bogush, Viktoriya V. Rossinskaya
Samara State Medical University, 20 Gagarina str., Samara, Russian Federation, 443079.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
2-(Morpholin-4-yl)-4,5-bis(2’’,2’’,2’’-trinitroethoxy)-1,3,5-triazine having QSAR-predicted anti-tumour activity was tested for the cytotoxicity using MTT and LDH cell viability tests. The work was primarily aimed to study an in vitro cytotoxic effect of the test compound on human fibroblasts, peripheral blood mononuclear cells and breast tumour cell cultures. The experiments were conducted using human fibroblasts, peripheral blood mononuclear cells and BT474 breast cancer cells and allowed to identify effective cytotoxic concentration ant therapeutic range of this compound. It was shown that 2-(morpholin-4-yl)-4,5-bis(2’’,2’’,2’’-trinitroethoxy)-1,3,5-triazine possesses a cytotoxic activity for breast cancer cells with a smaller effect on fibroblasts and blood mononuclear cells. A provisional therapeutic range of this compound is 0.6 - 2.0 µM, two order higher vs. doxorubicin which was used as a reference cytotoxic agent in these experiments. The data obtained suggest that 2-(morpholin-4-yl)-4,5-bis(2’’,2’’,2’’-trinitroethoxy)-1,3,5-triazine is a potential anti-cancer agent and a promising candidate for further anti-tumour efficacy studies.
Cite this article:
Larisa V. Limareva, Pavel V. Iliasov, Alexander A. Gidaspov, Vladimir A. Zalomlenkov, Aleksey S. Sustretov, Vanda V. Bogush, Viktoriya V. Rossinskaya. In vitro Cytotoxic effect of 2-(morpholin-4-yl)-4,5-bis(2’’,2’’,2’’-trinitroethoxy)-1,3,5-Triazine on Human Fibroblasts, Pzeripheral Blood Mononuclear Cells and Breast Cancer Cells. Research Journal Pharmacy and Technology. 2025;18(11):5142-6. doi: 10.52711/0974-360X.2025.00742
Cite(Electronic):
Larisa V. Limareva, Pavel V. Iliasov, Alexander A. Gidaspov, Vladimir A. Zalomlenkov, Aleksey S. Sustretov, Vanda V. Bogush, Viktoriya V. Rossinskaya. In vitro Cytotoxic effect of 2-(morpholin-4-yl)-4,5-bis(2’’,2’’,2’’-trinitroethoxy)-1,3,5-Triazine on Human Fibroblasts, Pzeripheral Blood Mononuclear Cells and Breast Cancer Cells. Research Journal Pharmacy and Technology. 2025;18(11):5142-6. doi: 10.52711/0974-360X.2025.00742 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-4
REFERENCES:
1. Gidaspov AA, Zalomlenkov VA, Bakharev VV, Parfenov VE, Yurtaev EV, Struchkova MI, Palysaeva NV, Suponitsky KY, Lempert DB, Sheremetev AB. Novel trinitroethanol derivatives: high energetic 2-(2,2,2-trinitroethoxy)-1,3,5-triazines. RSC Advances. 2016; 6(41): 34921-34, 10.1039/c6ra05826d.
2. Murugan V, Revathi S, Sumathi K, Geetha KM, Divekar K. Synthesis of Some 1-[Bis-N,N-(2-Chloroethyl)Aminoacetyl]-3,5-Disubstituted-1,2-Pyrazolines as Possible Alkylating Anticancer Agents. Asian J Research Chem. 2010; 3(2): 496-9.
3. Fernandes J, Kumar A, Kumar P. Synthesis and Biological Activity of Some Novel Quinolinyl Chalcones Derived from N-Substituted 2-Quinolones. Research J Pharm and Tech. 2013; 6(12): 1336-9.
4. Battin SN, Manikshete AH, Sarasamkar SK, Asabe MR, Sathe DJ. Synthesis, Spectral, Antibacterial, Antifungal and Anticancer activity Studies of Schiff bases Derived from O-Vanillin and Aminoquinolines. Asian J Research Chem. 2017; 10(5): 660-8, 10.5958/0974-4150.2017.00112.2.
5. Kumar MS, Aanandhi MV. An Insight into the Therapeutic Potential of Pyridopyrimidines as Anticancer Agents. Research J Pharm and Tech. 2018; 11(3): 1259-69. 10.5958/0974-360X.2018.00235.4.
6. Modi V, Shah RS. Synthesis, Characterization and Biological Activities of Some Novel Oxadiazole Derivatives. Asian J Research Chem. 2013; 6(7): 671-5.
7. Kalkotwar RS, Saudagar RB. Synthesis and QSAR Studies of Some 2,5-Diaryl Substituted-1,3,4-Oxadiazole Derivatives. Asian J Research Chem. 2013; 6(11): 985-91.
8. Radhika C, Venkatesham, A, Venkateshwar, RJ, Sarangapani M. Synthesis and Cytotoxic Activity of New Indole Derivatives. Asian J Research Chem. 2010; 3(4): 965-8.
9. Ganatra SH, Patle MR, Bhagat GK. Studies of Quantitative Structure-Activity Relationship (QSAR) of Hydantoin Based Active Anti-Cancer Drugs. Asian J Research Chem. 2011; 4(10): 1643-8.
10. Prasad RK, Loksh KR. Anticancer Potential of Coumarin derivatives: A Review. Asian Journal of Pharmacy and Technology. 2022; 12(4): 391-400.
11. Kubba AARM, Shihab WA, Al-Shawi N, N,. Insilico and in vitro Approach for Design, Synthesis, and Anti-proliferative Activity of Novel Derivatives of 5-(4-Aminophenyl)-4-Substituted Phenyl-2, 4-Dihydro-3H-1, 2, 4-Triazole-3-Thione. Research J Pharm and Tech. 2020; 13(7): 3329-39, 10.5958/0974-360X.2020.00591.0.
12. Kumar R, Kumar N, Roy RK, Singh A. Triazines – A comprehensive review of their synthesis and diverse biological importance. Current Medical and Drug Research. 2017; 1(1): 01-12.
13. Arya K, Dandia A. Synthesis and cytotoxic activity of trisubstituted-1,3,5-triazines. Bioorg Med Chem Lett. 2007; 17(12): 3298-304, 10.1016/j.bmcl.2007.04.007.
14. Dai Q, Sun Q, Ouyang X, Liu J, Jin L, Liu A, He B, Fan T, Jiang Y. Antitumor Activity of s-Triazine Derivatives: A Systematic Review. Molecules. 2023; 28(11). 10.3390/molecules28114278.
15. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikiv VV. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chemistry of Heterocyclic Compounds. 2014; 50: 444-457,
16. Harris LN, Yang L, Liotcheva V, Pauli S, Iglehart JD, Colvin OM, Hsieh TS. Induction of topoisomerase II activity after ErbB2 activation is associated with a differential response to breast cancer chemotherapy. Clin Cancer Res. 2001; 7(6): 1497-504,
17. Grinberg KM, Kukharenko VI, Lyashko VN, Terekhov SM, Pichugina EM, Freydin MI, Chernikov VG. [Human fibroblast culture for hereditary disease diagnostics]. In [Cell culture methods]. Edited by Pinaev GP. Leningrad: Nauka; 1988. pp. 250-257.
18. Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin C, Baell J, Chung TDY, Coussens NP, Dahlin JL, Devanarayan V, Foley TL, Glicksman M, Gorshkov K, Haas JV, Hall MD, Hoare S, Inglese J, Iversen PW, Kales SC, Lal-Nag M, Li Z, McGee J, McManus O, Riss T, Saradjian P, Sittampalam GS, Tarselli M, Trask OJ, Wang Y, Weidner JR, Wildey MJ, Wilson K, Xia M, Xu X, editors. Assay Guidance Manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004.
19. Bowyer C, Lewis AL, Lloyd AW, Phillips GJ, Macfarlane WM. Hypoxia as a target for drug combination therapy of liver cancer. Anticancer Drugs. 2017; 28(7): 771-80, 10.1097/CAD.0000000000000516.
20. Kim E, Jung Y, Choi H, Yang J, Suh JS, Huh YM, Kim K, Haam S. Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials. 2010; 31(16): 4592-9, 10.1016/j.biomaterials.2010.02.030.
21. Arakawa H, Morita M, Kodera T, Okura A, Ohkubo M, Morishima H, Nishimura S. In vivo anti-tumor activity of a novel indolocarbazole compound, J-107088, on murine and human tumors transplanted into mice. Jpn J Cancer Res. 1999; 90(10): 1163-70, 10.1111/j.1349-7006.1999.tb00691.x.