Author(s):
Faisal Akhmal Muslikh, Ira Oktavia, Burhan Ma’arif, Maximux M. Taek, Dyah Aryantini, Nadia Pramasari, Syendriva Zeptyan Zenmas
Email(s):
ira.oktavia@iik.ac.id
DOI:
10.52711/0974-360X.2025.00782
Address:
Faisal Akhmal Muslikh1, Ira Oktavia2*, Burhan Ma’arif3, Maximux M. Taek4, Dyah Aryantini2, Nadia Pramasari2, Syendriva Zeptyan Zenmas2
1Department of Pharmacy, Faculty of Pharmacy, Hang Tuah University, Surabaya 60111, Indonesia.
2Department of Pharmacy, Faculty of Pharmacy, Bhakti Wiyata Health Sciences Institute, Kediri 64114, Indonesia.
3Department of Pharmacy, Faculty of medicine and Health Science, Maulana Malik Ibrahim State Islamic University, Malang 65149, Indonesia.
4Department of Chemistry, Faculty of Mathematics and Natural Sciences, Widya Mandira Catholic University, Kupang 85211, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
Sexual desire (SD) is often considered normal, but many men lose their sexual life due to poor health conditions. Erectile dysfunction (ED), commonly called impotence, is a condition of sexual dysfunction in the process of male sexual activity. The use of common therapies such as phosphodiesterase-5 (PDE5) inhibition will cause long-term side effects, so alternatives are needed to overcome it. One natural solution that has the potential as an aphrodisiac is Lelak (Uvaria rufa), a plant that is traditionally used by the people of East Nusa Tenggara, Indonesia, to overcome male sexual dysfunction. This study aims to evaluate the safety and effectiveness of U. rufa caulis extract as an aphrodisiac through acute toxicity tests and in vivo testing. The 70% ethanol extract of U. rufa caulis (EeUrC), obtained through the maceration method, was evaluated for its toxicity based on the level of mortality in zebrafish embryos referring to OECD Guideline No. 236, and its aphrodisiac activity was measured through testicular weight parameters and the number of Leydig cells (LC). The results showed that the LD50 of EeUrC was 1096.7 µg/ml, which indicated relatively harmless (>1000 µg/ml), while (AA3) a dose of 1.7 mg/20 g BW of mice body weight per day was stated as the optimal dose for aphrodisiac activity. In conclusion, EeUrC is safe with mild toxicity and effective at optimal doses as an aphrodisiac.
Cite this article:
Faisal Akhmal Muslikh, Ira Oktavia, Burhan Ma’arif, Maximux M. Taek, Dyah Aryantini, Nadia Pramasari, Syendriva Zeptyan Zenmas. Aphrodisiac Effectiveness of 70% Ethanol Extract of Caulis Lelak (Uvaria rufa Blume.) on Male Mice (Mus musculus). Research Journal Pharmacy and Technology. 2025;18(11):5425-0. doi: 10.52711/0974-360X.2025.00782
Cite(Electronic):
Faisal Akhmal Muslikh, Ira Oktavia, Burhan Ma’arif, Maximux M. Taek, Dyah Aryantini, Nadia Pramasari, Syendriva Zeptyan Zenmas. Aphrodisiac Effectiveness of 70% Ethanol Extract of Caulis Lelak (Uvaria rufa Blume.) on Male Mice (Mus musculus). Research Journal Pharmacy and Technology. 2025;18(11):5425-0. doi: 10.52711/0974-360X.2025.00782 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-44
REFERENCES:
1. Dosch A. Rochat L. Ghisletta P. Favez N. der Linden MV. Psychological Factors Involved in Sexual Desire, Sexual Activity, and Sexual Satisfaction: A Multi factorial Perspective. Archives of Sexual Behavior. 2016; 45: 2029-2045. DOI:10.1007/s10508-014-0467-z
2. Chung E. Sexuality in ageing male: review of pathophysiology and treatment strategies for various male sexual dysfunctions. Medical Sciences. 2019; 7(10): 98.
3. Chen L. Shi G-rui. Huang D-d. Li Y. Ma C-c. Shi M. Su B-x. Shi G-j. Male sexual dysfunction: A review of literature on its pathological mechanisms, potential risk factors, and herbal drug intervention. Biomedicine and Pharmacotherapy. 2019; 112(2019): 108585. https://doi.org/10.1016/j.biopha.2019.01.046
4. Anderson1a D. Laforge J. Ross MM. Vanlangendonck R. Hasoon J. Viswanath O. and Urits I. Male Sexual Dysfunction. Health Psychology Research. 2022;10(3).
5. Allen MS. Wood AM. Sheffield D. The psychology of erectile dysfunction. Current Directions in Psychological Science. 2023; 32(6): 487-493.
6. Mazzilli F. Erectile dysfunction: causes, diagnosis and treatment: an update. Journal of Clinical Medicine. 2022; 11(21): 6429.
7. Lotti F. Maggi M. Sexual dysfunction and male infertility. Nature Reviews Urology. 2018; 15(5): 287-307.
8. Rusdi NK. Hikmawanti NPE. Maifitrianti UYS. Annisa AT. Aphrodisiac Activity of 70% Ethanol Extract Fraction of Katuk Leaves (Sauropus androgynus (L. Merr) in Male White Rats. Pharmaceutical Sciences and Research. 2018; 5(3): 123–132. https://doi.org/10.7454/psr.v5i3.4100
9. Ajit CP. Dattatraya SR. Ramchandra SP. Bhagwat AM. Ekal AB. RP-HPLC Method Development and Validation of Tadalafil in Tablet Dosage form. Asian Journal of Research in Chemistry. 2021; 14(5): 1-9. https://doi.org/10.52711/0974-4150.2021.00065
10. Asmita AT. Aishwarya SS. Nilofer SN. Tabassum SS. Padma LL. Aphrodisiac Potential of the Ficus religiosa Bark Extract in Male Wistar Rats. Research Journal of Pharmacy and Technology. 2024; 17(9): 4363-9. https://doi.org/10.52711/0974-360X.2024.00674
11. Irwin GM. Erectile dysfunction. Primary Care: Clinics in Office Practice. 2019; 46(2): 249-255.
12. Liu MC. Chang ML. Wang YC. Chen WH. Wu CC. Yeh SD. Revisiting the regenerative therapeutic advances towards erectile dysfunction. Cells. 2020; 9(5): 1250.
13. Jain MS. Koradia SK. Phosphodiesterase-5 (PDE5) inhibitors in the treatment of erectile dysfunction: a review. Asian Journal of Pharmaceutical Research. 2023; 13(1): 63-67.
14. Ausó E. Gómez‐vicente V. Esquiva G. Visual side effects linked to sildenafil consumption: An update. Biomedicines. 2021; 9(3); 291. https://doi.org/10.3390/biomedicines9030291
15. Fu B. Wang N. Tan HY. Li S. Cheung F. Feng Y. Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Frontiers in Pharmacology. 2018; 9: 1394.
16. Shaito A. Thuan DTB. Phu HT. Nguyen THD. Hasan H. Halabi S. and Pintus G. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Frontiers in Pharmacology. 2020; 11: 422.
17. Buncharoen W. Saenphet K. Saenphet S. Thitaram C. Uvaria rufa Blume attenuates benign prostatic hyperplasia via inhibiting 5α-reductase and enhancing antioxidant status. Journal of Ethnopharmacology. 2016; 194: 483-494.
18. Taek MM. Muslikh FA. Maulina N. Sawjana OH. Azzahra A. Aszari EH. ... and Ma’arif B. In Vivo Aphrodisiac Activity of 70% Ethanol Extract of Lelak Root (Uvaria rufa Blume.) in Male Mice (Mus musculus). Bioscientist: Jurnal Ilmiah Biologi. 2024; 12(2): 1904-1912.
19. Organisation for Economic Co-operation and Development. 2013. Test No. 236: Fish embryo acute toxicity (FET) test. Guidelines for the Testing of Chemicals. Paris, France.
20. Purnomo Y. Aini N. Widodo AM. Acute Toxicity Level of Pulutan (Urena lobata) Leaf Extract on Zebrafish (Danio rerio) and its Analysis by In Silico Study. Research Journal of Pharmacy and Technology. 2022; 15(6): 2477-2. https://doi.org/10.52711/0974-360X.2022.00413
21. Ashwathanarayana R. Naika R. Aphrodisiac studies of Pavetta crassicaulis Bremek. leaf, flower extract and it pure compounds using Wistar albino rats. Research Journal of Pharmacognosy and Phytochemistry. 2018; 10(1): 39-52.
22. Sabarinath C. Nandhu T. Sudhakar P. Gayathiri NM. Shanmuganath C. Teratogenic effect of Ethanolic extract of Solanum xanthocarpum berries in Zebrafish embryo. Research Journal of Pharmacy and Technology. 2020; 13(11): 5313-5316.
23. Bera SR. Pattanayak S. Kanthal LK. Iqubal G. Manna S. Gazal SS. Hanra S. Locomotor activity on zebra fish model using methanolic extract of Erigeron bonariensis L. Research Journal of Pharmacology and Pharmacodynamics. 2023; 15(2): 45-48. http://dx.doi.org/10.52711/2321-5836.2023.00009
24. Khotimah H. Sumitro SB. Widodo MA. Zebrafish Parkinson’s model: rotenone decrease motility, dopamine, and increase α-synuclein aggregation and apoptosis of zebrafish brain. Int J PharmTech Res. 2015; 4: 614-21.
25. Ma’arif B. Anwar MF. Hidayatullah H. Muslikh FA. Suryadinata A. Sugihantoro H. ... and Taek MM. Effect of polar fractions of Marsilea crenata C. Presl. leaves in zebrafish locomotor activity. Journal of Advanced Pharmaceutical Technology and Research. 2024; 15(2): 125-129.
26. El-Harbawi M. Toxicity measurement of imidazolium ionic liquids using acute toxicity test. Procedia Chemistry. 2014; 9: 40-52.
27. Basiru A. Abdullahi IO. Adakole AS. Jimoh AG. Abdulfatai A. Mistura AO. Correlation Between Testicular Biometrics and Serum Level of Reproductive Hormones of Crossed Arewa Breed of Stallions in Ilorin, Nigeria. Media Kedokteran Hewan (MKH). 2022; 33(2): 53-62. https://doi.org/10.20473/mkh.v33i2.2022.53-62
28. Ilacqua A. Francomano D. Aversa A. The physiology of the testis. Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham. 2018.
29. Li L. Lin W. Wang Z. Huang R. Xia H. Li Z. ... and Yang Y. Hormone Regulation in Testicular Development and Function. International Journal of Molecular Sciences. 2024; 25(11): 5805.
30. Martin LJ. Touaibia M. Improvement of testicular steroidogenesis using flavonoids and isoflavonoids for prevention of late-onset male hypogonadism. Antioxidants. 2020; 9(3). https://doi.org/10.3390/antiox9030237
31. Aladamat N. Tadi P. Histology, Leydig Cells. Statpearls Publishing. 2020.
32. Kumar KS. Sucharitha N. Savitha PV. Male Sexual Dysfunction–An Over Looked Health Issue. A and V Pub Journal of Nursing and Medical Research. 2022; 1(1): 27-31.
33. Widhiantara IG. Permatasari AAAP. Yasa I. Spermatogenic and Leydig Cells Induced Hyperlipidemia: A Review. Research Journal of Pharmacy and Technology. 2021; 14(10): 5573-5578. http://dx.doi.org/10.52711/0974-360X.2021.00971
34. Mishra R. Nikam A. Hiwarkar J. Nandgude T. Bayas J. Polshettiwar S. Flavonoids as potential therapeutics in male reproductive disorders. Future Journal of Pharmaceutical Sciences. 2024; 10(1): 100.
35. Dutta S. Sengupta P. Slama P. Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. International Journal of Molecular Sciences. 2021; 22(18): 10043.
36. Oduwole OO. Peltoketo H. Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Frontiers in Endocrinology. 2018; 9: 763.
37. Adamczewska D. Słowikowska-Hilczer J. Walczak-Jędrzejowska R. The fate of leydig cells in men with spermatogenic failure. Life. 2022; 12(4): 570.
38. Arisha AH. Ahmed MM. Kamel MA. Attia YA. Hussein MM. Morin ameliorates the testicular apoptosis, oxidative stress, and impact on blood–testis barrier induced by photo-extracellularly synthesized silver nanoparticles. Environmental Science and Pollution Research. 2019; 26: 28749-28762.
39. Kolarevic A. Pavlovic A. Djordjevic A. Lazarevic J. Savic S. Kocic G. ... and Smelcerovic A. Rutin as deoxyribonuclease I inhibitor. Chemistry and Biodiversity. 2019; 16(5): e1900069.
40. Murtaza M. Tajammal A. Ashfaq MH. Mirza W. Nazir A. Hanif I. A short review on synthetic methodologies of flavonoids. Asian Journal of Pharmacy and Technology. 2022; 12(1): 53-62. http://dx.doi.org/10.52711/2231-5713.2022.00010
41. Bhogam PB. Gharal SA. Patil TB. Varne AA. Lad PS. A systematic review on anticancer phytosomal flavonoids. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(4): 343-346. 10.52711/2231-5659.2023.00059
42. Chen M. Liu W. Li Z. Xiao W. Effect of epigallocatechin-3-gallate (EGCG) on embryos inseminated with oxidative stress-induced DNA damage sperm. Systems Biology in Reproductive Medicine. 2020; 66(4): 244-254.
43. Xu D. Wu L. Yang L. Liu D. Chen H. Geng G. Li Q. Rutin protects boar sperm from cryodamage via enhancing the antioxidative defense. Animal Science Journal. 2020; 91(1): e13328.
44. Osawe SO. Farombi EO. Quercetin and rutin ameliorates sulphasalazine‐induced spermiotoxicity, alterations in reproductive hormones and steroidogenic enzyme imbalance in rats. Andrologia. 2018; 50(5): e12981. https://doi.org/10.1111/and.12981
45. Ye RJ. Yang JM. Hai DM. Liu N. Ma L. Lan XB. Niu JG. Zheng P. Yu JQ. Interplay between male reproductive system dysfunction and the therapeutic effect of flavonoids. Fitoterapia. 2020; 147: 104756. https://doi.org/10.1016/j.fitote.2020.104756