Author(s): Pooja Prakash Rayanade, Amolkumar Kempwade, Rupesh Kulkarni, Shital Khavare, Shrivardhan Bolaj, Yadishma Gaude

Email(s): poojarayanade712@gmail.com , kempwadeamol@rediffmail.com , rupesh.k88@gmail.com , gourikhavare263@gmail.com , shrivardhanbolaj007@gmail.com , yadishmagaude@gmail.com

DOI: 10.52711/0974-360X.2025.00787   

Address: Pooja Prakash Rayanade, Amolkumar Kempwade, Rupesh Kulkarni, Shital Khavare, Shrivardhan Bolaj, Yadishma Gaude
KLE College of Pharmacy, Nipani.
*Corresponding Author

Published In:   Volume - 18,      Issue - 11,     Year - 2025


ABSTRACT:
Aim: The goal of the present study was to develop and optimize loxoprofen-loaded microspheres for sustained-release drug delivery system. Loxoprofen is a potent NSAID prodrug belonging to the BSC class II drug with high permeability and low solubility. It is utilized to treat long-term pain and inflammatory disorders. Methods: Microspheres were developed using the protein gelation technique, with varying concentrations of egg albumin and Tween 80 as suggested by the Box-Behnken design. The spherical morphology of the microspheres was confirmed through Scanning electron microscopy. The formulation with the most desirable size of particle and entrapment efficacy was chosen. Results: The microspheres exhibited a particle size (PS) of 191.27nm and entrapment efficacy (EE) of 78.98%, with a low deviation. Batch F9 showed the optimal results. In vitro investigations showed that pure LOX was released completely within 1 hour, while LOX-loaded microspheres released 88.07% within 8 hours. The formulation exhibited short-term stability, maintaining its integrity and properties when stored at room temperature. Conclusion: Loxoprofen-loaded egg albumin microspheres can be a potential sustained-release drug delivery, offering a controlled and prolonged release of therapeutically active drug concentrations at the target site.


Cite this article:
Pooja Prakash Rayanade, Amolkumar Kempwade, Rupesh Kulkarni, Shital Khavare, Shrivardhan Bolaj, Yadishma Gaude. Design and Optimization of Sustain Release Drug Delivery System of Loxoprofen. Research Journal Pharmacy and Technology. 2025;18(11):5460-4. doi: 10.52711/0974-360X.2025.00787

Cite(Electronic):
Pooja Prakash Rayanade, Amolkumar Kempwade, Rupesh Kulkarni, Shital Khavare, Shrivardhan Bolaj, Yadishma Gaude. Design and Optimization of Sustain Release Drug Delivery System of Loxoprofen. Research Journal Pharmacy and Technology. 2025;18(11):5460-4. doi: 10.52711/0974-360X.2025.00787   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-49


REFERENCES:
1.    Carson JL, Willett LR. Toxicity of nonsteroidal anti-inflammatory drugs. An overview of the epidemiological evidence. Drugs. 1993; 46: 243-8. https://doi.org/10.2165/00003495-199300461-00063
2.    Masferrer J, et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. 1994; 91(8): 3228-32. https://doi.org/10.1073/pnas.91a.8.3228
3.    Baselt RC, Cravey RH. Disposition of toxic drugs and chemicals in man. Davis, CA: Biomed;12th   Edition.1982.
4.    Greig SL, Garnock-Jones KP. Loxoprofen: A review in pain and inflammation. Clin Drug Investig. 2016; 36(9): 771-81https://doi.org/10.1007/s40261-016-0440-9.
5.    Tak JW, et al. Preparation and optimization of immediate release/sustained release bilayered tablets of loxoprofen using Box–Behnken design. AAPS PharmSciTech. 2017; (4): 1125-34. https://doi.org/10.1208/s12249-016-0580-5
6.    Matsuda K, et al.CS-600, a new anti-inflammatory agent. Inhibitory activity on prostaglandin biosynthesis. Jpn J Inflamm.1982 ;2(3):263-6.
7.    Yamaguti T, et al. CS-600, a new antiinflammatory agent. II. Pharmacological efficacy and ulcerogenic effect of CS-600 and its active metabolites. Jpn. J. Inflam. 1983; 3:63-7.
8.    Kawano S, et al. Effects of loxoprofen sodium, a newly synthesized non‐steroidal anti‐inflammatory drug, and indomethacin on gastric mucosal haemodynamics in the human. J. Gastroenterol.1995; 10(1): 81-5. https://doi.org/10.1111/j.1440-1746.1995.tb01053.x
9.    Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomesBioMed Res Int. 2013. https://doi.org/10.1155/2013/616810
10.    Hazma M, et al. Loxoprofen nanosponges: Formulation, characterization and ex-vivo study. Int. J. Appl. Pharm. 2022; 14(2): 233-241
11.    Chen Y, Li T.Cellular uptake mechanism of paclitaxel nanocrystals determined by confocal imaging and kinetic measurement. The AAPS Journal. 2015; 17: 1126-34.
12.    Cho, et al. Direct and simultaneous analysis of loxoprofen and its diastereometric alcohol metabolites in human serum by on-line column switching liquid chromatography and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 835, 27–34. https://doi.org/10.1016/j.jchromb.2006.02.058
13.    Ahmad U, et al. Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: Development, characterization and in-vivo evaluation. Int. J. Biol. Macromol. 2019; 129: 233-45. https://doi.org/10.1016/j.ijbiomac.2019.02.031.
14.    Yamakawa, N et al.Properties and synthesis of 2-{2-fluoro (or bromo)-4-[(2-oxocyclopentyl)methyl]phenyl}propanoic acid: Nonsteroidal anti-inflammatory drugs with low membrane permeabilizing and gastric lesion-producing activities. J. Med. Chem. 2010; 53, 7879–7882. https://doi.org/10.1021/jm101116s
15.    Kaur G,et al. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. InDrug targeting and stimuli sensitive drug delivery systems. 2018; (pp. 567-626). https://doi.org/10.1016/B978-0-12-813689-8.00015-X
16.    Seki T,et al. A novel preparation method for microspheres of water soluble polymers using polypropyleneglycol as the dispersion medium. Chem. Pharm. Bull. 2007; 55(3): 403-6. https://doi.org/10.1248/cpb.55.403
17.    Kim KK, Pack DW. Microspheres for drug delivery. InBioMEMS and biomedical nanotechnology. 2006; (pp. 19-50).
18.    Ullah A, et al. Formulation of Loxoprofen Microparticles and its In Vitro Characterization. Lat. Am. J. Pharm. 2019; 38(8): 1659-62.
19.    Venkatesan P, et al .Preformulation parameters characterization to design, development and formulation of loxoprofen loaded microspheres. Int. J. Pharm. Biomed. Res. 2011; 2(3): 107-17.
20.    Urs AV, Kavitha K, Sockan GN. Albumin microspheres: an unique system as drug delivery carriers for non-steroidal anti-inflammatory drugs (NASIDs). Int J Pharm Sci Rev Res. 2010; 5(2):10-7.
21.    Agrawal M,et al. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomedicine and Pharmacotherapy. 2021; 141: 111919. https://doi.org/10.1016/j.biopha.2021.111919.
22.    Wang F,et al. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box–Behnken design. Journal of liposome Research. 2014; 24(3): 171-81. https://doi.org/10.3109/08982104.2014.891231
23.    Nanjwade BK, et al. Formulation and Characterization of Hydralazine Hydrochloride Biodegraded Microspheres for Intramuscular Administration. J Bioanal Biomed. 2011; 3: 032-037. https://dx.doi.org/10.4172/1948-593x.1000040
24.    Muniyandy S.et al.Development of gelatin microspheres loaded with diclofenac sodium for  intra-articular administration J Drug Target. 2011; 19(2): 96-103 https://doi.org/10.3109/10611861003733979
25.    Surendiran.N.S, Yuvaraj.T.V. Preparation and evaluation of Ibuprofen Micro spheres by using Co-acervation phase separation technique Int. J. Chemtech Res. 2010; 2(2): 1214-1219.
26.    Sunit K.S.Trop. J. Pharm. Res. 2005; 4 (1): 369-375. https://doi.org/10.4314/tjpr.v4i1.14622
27.    Rastogi. R, et al. Alginate microspheres of Isonizaid for oral sustained drug delivery. Int. J. Pharm. 2007; 71-77. https://doi.org/10.1016/j.ijpharm.2006.10.024
28.    Parajo J C, at al. (1992) Bioprocess Eng 8: 129 – 136
29.    Shailesh TP, et al. Preparation and in vitro evaluation of ethylcellulose coated egg albumin microspheres of diltiazem hydrochloride. J Young Pharm. 2010; 2(1): 27-34. https://doi.org/10.4103/0975-1483.62209
30.    Jiang Y, et al. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro–in vivo correlation. Int. J. Pharm. 2014; 475 (1-2): 475-84. https://doi.org/10.1016/j.ijpharm.2014.09.016

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available