Author(s):
Hanidya Fidela Ulayya, Erindyah Retno Wikantyasning
Email(s):
erindyah.rw@ums.ac.id
DOI:
10.52711/0974-360X.2025.00792
Address:
Hanidya Fidela Ulayya1, Erindyah Retno Wikantyasning2*
1Magister of Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. Ahmad Yani No.157, Pabelan, Sukoharjo, Jawa Tengah, Indonesia 57169.
2Department of Pharmaceutics, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Jl. Ahmad Yani No.157, Pabelan, Sukoharjo, Jawa Tengah, Indonesia 57169.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
Snail mucus (Achatina fulica) is an abundant natural resource in Indonesia and has garnered attention in the field of skin health. The active compound of a A. fulica mucus, namely Allantoin, has wound healing properties, which shows potential for treating cellulite. This study aimed to develop and optimize a nanoemulgel formulation containing Achatina fulica mucus. A pseudoternary phase diagram was used to determine the optimal ranges of oil, surfactant mixture (Smix), and water in the A. fulica mucus nanoemulsion formulation. The composition was optimized using a D-optimal mixture design (Design Expert ver 13) with oil (A), Smix (B), and water (C) as independent variables, and % transmittance (Y1), droplet size (Y2), polydispersity index (Y3), and zeta potential (Y4) as response variables. The optimized nanoemulsion was then combined with Carbopol 940 gel base at concentrations of 0.5%, 0.75%, 1%, and 2%. The final optimal A. fulica mucus nanoemulgel formulation consisted of 15.67% olive oil, 49.67% Tween 20:PEG 400 (2:1), 34.67% water, and 1% Carbopol 940. The average droplet size was 38.33±33.86 nm. In vitro drug penetration studies using a Franz diffusion cell with PVDF synthetic membranes showed flux values of 2114.8±49.3 µg/h/cm² for A. fulica mucus, 4832.5±54.6 µg/h/cm² for the A. fulica mucus nanoemulsion, and 3200.2±30.8 µg/h/cm² for the A. fulica mucus nanoemulgel. The increased flux observed in the A. fulica mucus nanoemulsion and nanoemulgel formulations demonstrated that the D-optimal mixture design was an effective tool for optimizing the formulation.
Cite this article:
Hanidya Fidela Ulayya, Erindyah Retno Wikantyasning. Nanoemulgel Optimization of Achatina fulica Mucus: A D-Optimal Mixture Design Approach for Enhanced Formulation and Penetration Evaluation In Vitro. Research Journal Pharmacy and Technology. 2025;18(11):5493-1. doi: 10.52711/0974-360X.2025.00792
Cite(Electronic):
Hanidya Fidela Ulayya, Erindyah Retno Wikantyasning. Nanoemulgel Optimization of Achatina fulica Mucus: A D-Optimal Mixture Design Approach for Enhanced Formulation and Penetration Evaluation In Vitro. Research Journal Pharmacy and Technology. 2025;18(11):5493-1. doi: 10.52711/0974-360X.2025.00792 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-54
REFERENCES:
1. Daud NS. Akbar AJ. Nurhikma E. Bina P. Kendari H. Formulation of Snail Slime Anti-acne Emulgel using Tween 80, Span 80, and HPMC. Borneo Journal of Pharmacy. 2018; 1(2): 64–67. https://doi.org/10.33084/bjop.v1i2.369
2. El MMAS. Lamari FN. Kontoyannis C. Simultaneous Determination of Allantoin and Glycolic Acid in Snail Mucus and Cosmetic Creams with High Performance Liquid Chromatography and Ultraviolet Detection. Journal of Chromatography A. 2013; 1322: 49–53. https://doi.org/10.1016/j.chroma.2013.10.086
3. Cilia G. Fratini F. Antimicrobial Properties of Terrestrial Snail and Slug Mucus. Journal of Complementary and Integrative Medicine. 2018; 15(3): 1–10. https://doi.org/10.1515/jcim-2017-0168
4. Sari PM. Optimization of the SNEDDS Formula of Snail Mucus (Achatina fulica) Using Capryol 90, Kolliphor EL, and PEG 400 Components with the D-Optimal Method. Universitas Setia Budi. 2020. available on https://repo.setiabudi.ac.id/4602/1/INTISARI.pdf
5. Putri DK. Berniyanti T. Jularso E. Distribution of Snail Mucous Extract (Achatina Fulica) on the Number of Wound’s Basal Epithelial Cells in Rats of Wistar Strain. Indian Journal of Forensic Medicine and Toxicology. 2020; 14(4): 920–926. https://doi.org/10.37506/ijfmt.v14i4.11611
6. Ainaro EP. Gadri A. Priani SE. Formulation of a Peel-Off Gel Mask Containing Snail Mucus (Achatina fulica Bowdich) as a Skin Moisturizer. Proceedings of SPeSIA Research, Unisba. 2015; 1(2): 86–95. http://dx.doi.org/10.29313/.v0i0.1625
7. Sutanto YS. Sutanto M. Harti AS. Puspawati N. The Sensitivity Test of Mycobacterium Tuberculosis Isolates from Suspect Tuberculosis Patients to The Seromucous of Snail and Chitosan as an Alternative Anti-Tuberculosis Drugs. Asian Journal of Pharmaceutical and Clinical Research. 2020; 13(10): 44–49. https://doi.org/10.22159/ajpcr.2020.v13i10.38266
8. Momoh MA. Chime SA. Ogbodo DU. Akudike PK. Udochukwu SU et al. Biochemical, Rheological and Hydrophile-Lipophile Balance (HLB) Evaluation of Archachatina marginata (snail) Mucin Extract for Possible Nutraceutical and Nano Biopharmaceutical Applications. Tropical Journal of Pharmaceutical Research. 2019; 18(5): 927–934. https://doi.org/10.4314/tjpr.v18i5.3
9. Ahmad J. Gautam A. Komath S. Bano M. Garg A. Jain Kl. Topical Nano-emulgel for Skin Disorders: Formulation Approach and Characterization. Recent Patents on Anti-Infective Drug Discovery. 2018; 14(1): 36–48. https://doi.org/10.2174/1574891x14666181129115213
10. Prasetyo BE. Laila L. Hanum TI. Physical Characterization of Nanoemulgel containing Ethanol Extract of Curcuma mangga Val. using Carbopol 940 as Gelling agent. Research Journal of Pharmacy and Technology. 2022; 15(7): 3020–3024. https://doi.org/10.52711/0974-360X.2022.00504
11. Yahya NA. Wahab RA. Attan N. Hashim SE. Hamid MA. Noor NM. Rahman AA. Optimization of Oil-in-Water Nanoemulsion System of Ananas comosus Peels Extract by D-Optimal Mixture Design and its Physicochemical Properties. Journal of Dispersion Science and Technology. 2022; 43(2): 302–315. https://doi.org/10.1080/01932691.2020.1839485
12. Kahfi MA. Sutisna AN. Ainia H. Cecep AR. Using Design Expert D-optimal for Formula Optimization of Functional Drink that Enriched with Moringa Leaf Extract (Moringa oleifera). IOP Conference Series: Earth and Environmental Science. 2021; 759(1): 1–11. https://doi.org/10.1088/1755-1315/759/1/012002
13. Carneiro AF. Carneiro CN. Pires LN. Teixeira LSG. Azcarate SM. Dias FS. D-optimal Mixture Design for The Optimization of Extraction Induced by Emulsion Breaking for Multielemental Determination in Edible Vegetable Oils by Microwave-Induced Plasma Optical Emission Spectrometry. Talanta. 2020; 219: 1–8. https://doi.org/10.1016/j.talanta.2020.121218
14. Mulleria SS. Marina K. Ghetia SM. Formulation, Optimization and in vitro Evaluation of Apremilast Nanoemulgel for Topical Delivery. International Journal of Pharmaceutical Investigation. 2021; 11(2): 230–237. https://doi.org/10.5530/ijpi.2021.2.41
15. Suwarmi. Suwaldi. Martien R. Riyanto S. Formulation and optimization of cremophore and PEG 400 in self nanoemulsifying drug delivery system (SNEDDS) resveratrol with soybean oil as a carrier. AIP Conference Proceedings. 2022; 2706(1): 020100. https://doi.org/10.1063/5.0120389
16. Imanto T. Prasetiawan R. Wikantyasning ER. Formulation and Characterization of Nanoemulgel Preparation of Aloe Vera (Aloe vera L.) Powder. Pharmacon: Indonesian Journal of Pharmacy. 2019; 16(1): 28–37. https://doi.org/10.23917/pharmacon.v16i1.8114
17. Maanvizhi S. Iyyappan V. Bhavishi PG. In-vitro Release Study of Diclofenac Sodium from Topical Gel Formulations using Diffusion Cell. Research Journal of Pharmacy and Technology. 2020; 13(6): 2901–2905. https://doi.org/10.5958/0974-360X.2020.00517.X.
18. Nagajyothi M. Pramod K. Bijin EN. Baby JN. Valsalakumari J. Accelerated Stability Studies of Atorvastatin Loaded Nanoemulsion Gel. Asian Journal of Pharmacy and Technology. 2015; 5(3): 188. https://doi.org/10.5958/2231-5713.2015.00027.6
19. Ali S. Shabbir M. Farooq M. Adnan S. Shahid N. The Enhancement Effect of Permeation Enhancers on Bisoprolol Fumarate Across Animal Membrane using Franz Diffusion Cell. Research Journal of Pharmacy and Technology. 2014; 7(12): 1391–1395. https://doi.org/10.5958/0974-360X
20. Madhavi. Reddy CS. Rao BT. New Validated Method for The Estimation of Allantoin and Permethrin usign RP-HPLC in Bulk and Pharmaceutical Dosage Form. International Journal of Applied Pharmaceutics. 2021; 13(5): 1–7. https://dx.doi.org/10.22159/ijap.2021v13i5.42110.
21. Mishra VVBK. Bhanja SB. Panigrahi BB. Development and Evaluation of Nanoemulsion gel for Transdermal Delivery of Valdecoxib. Research Journal of Pharmacy and Technology. 2019; 12(2): 600–610. https://doi.org/10.5958/0974-360X.2019.00107.0
22. Barradas TN. Silva HKG. Nanoemulsions of Essential Oils to Improve Solubility, Stability and Permeability: a Review. Environmental Chemistry Letters. 2021; 19(2): 1153–1171. https://doi.org/10.1007/s10311-020-01142-2
23. Bakri DFF. Wikantyasning ER. Muhtadi. Formulation and Characterization of Nanoemulsion from Traditional Extracts for Antidiabetic. Indonesian Journal of Global Health Research. 2019; 2(4): 441–448. https://doi.org/10.37287/ijghr.v2i4.250
24. Kresnawati Y. Shantiningsih RR. Martien R. Optimization of Soybean Oil, Tween 80, PEG 400 in Formulation of Beta Carotene Nanoemulsion. Research Journal of Pharmacy and Technology. 2020; 13(12): 5692–5698. https://doi.org/10.5958/0974-360X.2020.00991.9
25. Freire TB. Dario MF. Mendes OG. Oliveira AC. Neto AV et al. Nanoemulsion Containing Caffeine for Cellulite Treatment: Characterization and In Vitro Evaluation. Journal of Pharmaceutical Sciences. 2019; 55: 1–11. https://doi.org/10.1590/s2175-97902019000218236
26. Winarti L. Suwaldi. Martien R. Hakim L. Formulation of Self-Nanoemulsifying Drug Delivery System of Bovine Serum Albumin using HLB (Hydrophilic-Lypophilic Balance) Approach. Indonesian Journal of Pharmacy. 2016; 27(3): 117–127. https://doi.org/10.14499/indonesianjpharm27iss3pp117
27. Prasad KL. Hari K. Formulation and Evaluation of Solid Self-Nanoemulsifying Drug Delivery System for Enhancing the Solubility and Dissolution Rate of Budesonide. Research Journal of Pharmacy and Technology. 2021; 14(11): 5755–5763. https://doi.org/10.52711/0974-360X.2021.01001
28. Midekessa G. Godakumara K. Ord J. Viil J Lattekivi F et al. Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS Omega. 2020; 5(27):16701–16710. https://doi.org/10.1021/acsomega.0c01582
29. Asyhari HF. Cabral KB. Wikantyasning ER. Optimization of Soursop (Annona muricata L.) Leaf Extract in Nanoemulgel and Antiacnes Activity Test Against Propionibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis Bacteria. Pharmacon: Indonesian Journal of Pharmacy. 2023; 20(2): 216–225. https://doi.org/10.23917/pharmacon.v20i2.23308
30. Setyawan EI. Antari NPA. Putra IGAD. Swastini DA. Hamzah H. Indrati O. Optimization Formula of Coffee-Maca Granules as an Aphrodisiac Functional drink using D-Optimal mixture Design and PCA-CA. Research Journal of Pharmacy and Technology. 2023; 16(3): 1463–1470. https://doi.org/10.52711/0974-360X.2023.00241
31. Redkar MR. Hasabe PS. Jadhav ST. Mane PS. Kare DJ. Review on Optimization base Emulgel Formulation. Asian Journal of Pharmacy and Technology. 2019; 9(3): 228. https://doi.org/10.5958/2231-5713.2019.00038.2
32. Andini S. Yulianita Y. Febriani ENK. Formulation of Nanoemulgel Preparation of Black Pepper (Piper nigrum L.) Fruit Extract with Variation in Tween 80 and PEG 400 Concentrations. Majalah Farmasetika. 2023; 8(3): 250. https://doi.org/10.24198/mfarmasetika.v8i3.40678
33. Hidayanti UW. Fadraersada J. Ibrahim A. Formulation and Optimization of Carbopol 940 Gel Base with Various Concentrations. Proceeding of Mulawarman Pharmaceuticals Conferences. 2015; 1: 68–75. https://doi.org/10.25026/mpc.v1i1.10
34. Indah S. Rahmani P. Zulkarnain AK. Optimization of HPMC and Na-CMC as Gelling Agents on Physical Properties and Stability in Sunflower Seed Oil Gel Formulation. J.Food Pharm.Sci. 2023; 11(2): 812–819. https://doi.org/10.22146/jfps.8227.
35. Zheng Y. Ouyang WQ. Wei YP. Syed SF. Hao CS. Wang BZ. Shang YH. Effects of Carbopol® 934 Proportion on Nanoemulsion Gel for Topical and Transdermal Drug Delivery: A Skin Permeation Study. Int. J. Nanomedicine. 2016; 2016(11): 5971–5987. https://doi.org/10.2147/IJN.S119286
36. Seo JE. Kim S. Kim BH. In Vitro Skin Absorption Tests of Three Types of Parabens using a Franz Diffusion Cell. Journal of Exposure Science and Environmental Epidemiology. 2017; 27(3): 320–325. https://doi.org/10.1038/jes.2016.33
37. Bhatt TR. and Golwala D. In-Vitro Study on Permeation of different Semi-solid dosage forms of Timolol Maleate using Franz cell. Research Journal of Pharmacy and Technology. 2022; 15(6): 2721–2726. https://doi.org/10.52711/0974-360X.2022.00455