Author(s): Maria Magdalena Riyaniarti Estri Wuryandari, Ninis Yuliati, Vivien Dwi Purnamasari

Email(s): mm.riyaniarti@iik.ac.id

DOI: 10.52711/0974-360X.2025.00801   

Address: Maria Magdalena Riyaniarti Estri Wuryandari1, Ninis Yuliati1, Vivien Dwi Purnamasari2
1Departement of Pharmacy, Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri, 64114 East Java, Indonesia.
2Bachelor of Publich Health, Faculty of Health Management Technology, Institut Ilmu Kesehatan Bhakti Wiyata, Kediri, 64114 East Java, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 11,     Year - 2025


ABSTRACT:
Hepatotoxicity, or liver damage caused by infection or chronic inflammation, is often a challenge in managing typhoid fever. This infection triggers an immune response involving various immune cells, including NK cells and macrophages. NK cells play a crucial role in identifying and destroying infected cells, while macrophages are involved in pathogen phagocytosis and cytokine production, which can exacerbate inflammation. Objective: The present study aimed to evaluate Moringa oleifera extract effects on S. typhi infection in mice. Materials and method: Female Balb/C mice were randomly divided into eight groups. The treatment groups were orally administered with extract Moringa oleifera at doses 14, 42, and 84 mg/kg BW during the 28 days experimental period. Then S. typhi was introduced to mice through intraperitoneal injection except in the healthy groups. The extract Moringa oleifera administration was continued for the next seven days. Cells that expressed CD11b+TNF-a+, NK+IFN-?+ were assessed by flow cytometry and analysis liver with Hematoxylin and Eosin (HE). Result Our result suggested that Moringa oleifera extract significantly increased (p < 0.05) the expression of CD11b +TNF-a+, NK+IFN-?+ subsets. Conclusion: The Moringa leaf extract has the potential to act as an immunomodulatory agent by regulating the immune response through the reduction of pro-inflammatory cytokines such as IFN-?+ and TNF-a+. This mechanism ultimately decreases inflammation and improves the liver condition of mice infected with Salmonella typhi.


Cite this article:
Maria Magdalena Riyaniarti Estri Wuryandari, Ninis Yuliati, Vivien Dwi Purnamasari. Red Moringa oleifera Demonstrates Protective Hepatotoxicy effects in Mice Infected with Salmonella typhi by Suppressing Natural Killer (NK) and Macrophage. Research Journal Pharmacy and Technology. 2025;18(11):5557-2. doi: 10.52711/0974-360X.2025.00801

Cite(Electronic):
Maria Magdalena Riyaniarti Estri Wuryandari, Ninis Yuliati, Vivien Dwi Purnamasari. Red Moringa oleifera Demonstrates Protective Hepatotoxicy effects in Mice Infected with Salmonella typhi by Suppressing Natural Killer (NK) and Macrophage. Research Journal Pharmacy and Technology. 2025;18(11):5557-2. doi: 10.52711/0974-360X.2025.00801   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-63


REFERENCES:
1.    Jajere, S. A. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Veterinary World. 2019; 12(4): 504-521. https://doi.org/10.14202/vetworld.2019.504-521
2.    Ehuwa, O., Jaiswal, A. K., and Jaiswal, S. Salmonella, food safety and food handling practices. Foods. 2021; 10(5): 907. https://doi.org/10.3390/foods10050907
3.    World Health Organization. WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007-2015. Geneva: World Health Organization. 2015; Available at: https://doi.org/10.1007/978-3-319-19076-5_14
4.    Ghosh, A., and Chatterjee, A. Salmonella Infections: A Comprehensive Review on the Pathogenesis and its Implications. Current Microbiology. 2023; 80(4): 98-114. DOI: 10.1007/s00284-023-03345-3.
5.    Thirumalaisamy, S. K., and Bhuvaneshwari, R. The Clinical Implications of Hepatotoxicity in Salmonella Typhi Infection. Journal of Infection and Public Health. 2022; 15(3): 323-329. https://doi.org/10.1016/j.jiph.2021.11.015
6.    Stauffer, W., Mantey, K., and Kamat, D. Multiple extra-intestinal manifestations of typhoid fever. Infection. 2002; 30(2): 113. https://doi.org/10.1007/s15010-002-1121-6
7.    Van de Velde, L. A., and Murray, P. J. Proliferative capacity of myeloid cells in immune regulation and inflammation. Seminars in Immunology. 201; 28(5): 502-509 https://doi.org/10.3855/jidc.7771
8.    Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., Yokoyama, W. M., and Ugolini, S. Innate or adaptive immunity? The example of natural killer cells. Science, 2011; 331(6013), 44–49. https://doi.org/10.1126/science.1190970
9.    Wynn, T. A., and Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016; 44(3): 450–462. https://doi.org/10.1016/j.immuni.2016.02.015
10.    Sreelatha, S., and Padma, P. R. Modulatory effects of Moringa oleifera extracts against hydrogen peroxide-induced cytotoxicity and oxidative damage. Human and Experimental Toxicology. 2011; 30(9): 1359-1368. https://doi.org/10.1177/0960327110391385
11.    Maria Magdalena Riyaniarti Estri Wuryandari, Mochammad Fitri Atho'illah , Rizky Dzariyani Laili, Siti Fatmawati d , Nashi Widodo, Edi Widjajanto, Muhaimin Rifa'i. Lactobacillus plantarum FNCC 0137 fermented red Moringa oleifera exhibits protective effects in mice challenged with Salmonella typhi via TLR3/TLR4 inhibition and down-regulation of proinflammatory cytokines. Journal of Ayurveda and Integrative Medicine. 2022; 13(2): 100531. https://doi.org/ 10.1016/j.jaim.2022.100531
12.    Charan, J., Bhardwaj, P., Dutta, S., Kaur, R., Bist, S. K., and Kleang, S. Anti-inflammatory and antioxidant properties of Moringa oleifera leaf extracts: A review of preclinical and clinical evidence. Journal of Ayurveda and Integrative Medicine 2022; 13(1): 100-110. https://doi.org/10.1016/j.jaim.2021.06.007
13.    Laili RD, Martati E, Rifa’i M. Immunomodulator effect of Moringa oleifera leaves fermented by Lactobacillus plantarum FNCC 0137 on Salmonella typhi infected Balb/C mice. Res J Pharm Technol. 2019; 12: 3595. https://doi.org/10.5958/0974-360X.2019.00613.9
14.    Fatmawati S, Laili RD, Wuryandari MRE, Martati E, Widyaningsih TD, Rifa’i M. Fermented ethanolic extract of Moringa oleifera leaves with Lactobacillus plantarum FNCC 0137 as immunomodulators on Salmonella typhi infected mice. Res J Pharm Technol. 2020; 13(12): 1e6. https://doi.org/10.5958/0974-360X.2020.01007.0
15.    Maria Magdalena Riyaniarti Estri Wuryandari, Widodo W, Widjajanto E, Rifa’i M. Activity red Moringa oleifera leaf extract as a preventive measure on the profile of CD4+CD62L+and CD8+CD62L+Cells in BALB/c mice injected Salmonella typhimurium. KnE Soc Sci. 2019; https://doi.org/10.18502/kss.v3i11.4266
16.    Maria Magdalena Riyaniarti Estri Wuryandari, Widodo N, Widjajanto E, Jatmiko YD, Rifa’i M. Red Moringa oleifera leaf fermentation extract protecting Hepatotoxicity in Balb/C mice injected with Salmonella typhi through Nrf-2, HO-1, and SOD- 2 signaling pathways. Res J Pharm Technol. 2020; 13: 1e6. https://doi.org/10.5958/0974-360X.2020.00367.8
17.    Atho’illah MF, Safitri YD, Nur’aini FD, Widyarti S, Tsuboi H, Rifa’i M. Elicited soybean extract attenuates proinflammatory cytokines expression by modulating TLR3/TLR4 activation in high-fat, high-fructose diet mice. J Ayurveda Integr Med.2021; 12:43e51. https://doi.org/10.1016/j.jaim.2020.10.008.
18.    Chong, P. M., and Chen, Y. T. Natural killer cells in liver diseases: from pathogenesis to therapy. Nature Reviews Immunology, 2022; 22(8); 509-524. https://doi.org/10.1038/s41577-022-00648-0.
19.    Bradley, J. R. TNF-mediated inflammatory disease. Journal of Pathology, 2017; 214(2); 149-160. https://doi.org/10.1002/path.4630
20.    Nienhold, R., et al. Two distinct immunopathological profiles in patients with COVID-19. Nature Communications. 2020; 11(1): 5819. https://doi.org/10.1038/s41467-020-19650-0
21.    Tracey, K. J., and Cerami, A. Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Annual Review of Medicine. 2014; 65; 355-365. https://doi.org/10.1146/annurev-med-012012-112343
22.    Gopalkrishnan, R., Pochampally, R., Kessler, J., Matta, H., and Chaudhary, P. M. Targeting MYC in KSHV-associated primary effusion lymphoma with BET bromodomain inhibitors. Oncogene. 2016; 35(7): 813–825. https://doi.org/10.1038/onc.2015.157
23.    Maria Magdalena Riyaniarti Estri Wuryandari, Ninis Yuliati, Ekawati Sutikno, Saad A.,Mohamed. Interaction Affinity Between Flavonoids of Moringa Oleifera Leaves Against Cytokines Interleukin 12 in Diabetes Mellitus Afinitas Interaksi Antara Flavonoid Terhadap Sitokin Interleukin 12 Pada Penyakit Diabetes Militus. Ilmu Media Kesehatan. 2023; 12(2); 217-223. https://doi.org/10.29238/imk.v12i2.171
24.    Jaja-Chimedza A, Graf BL, Simmler C, Kim Y, Kuhn P, Pauli GF, et al. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One. 2017; 12:e0182658. https://doi.org/10.1371/journal.pone.0182658
25.    Ciapara, I. Higuera, M. Benitez-Vindiola, L. J. Figueroa-Yañez, and E. Martínez-Benavidez. Polyphenols and CRISPR as Quorum Quenching Agents in Antibiotic-Resistant Foodborne Human Pathogens (Salmonella Typhimurium, Campylobacter jejuni, and Escherichia coli 0157). Foods. 2024; 13(4): 584.
26.    Samuggam, S., Reddy, L.V., Solayappan, M., and Yin, L.S.. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. International Journal of Molecular Sciences, 2022; 23(12): 6462. 10.3390/ijms23126462.
27.    Muthusamy, M., Bhanumathi, K., Subramanian, R., and Vasu, K. Hepatoprotective effect of Moringa oleifera extract on TNF-α and TGF-β expression in acetaminophen-induced liver fibrosis in rats. Egyptian Journal of Medical Human Genetics. 2022; 23(1): 10. doi:10.1186/s43042-021-00155-7. https://doi.org/10.1186/s43042-021-00155-7.
28.    Zhang, L., Xu, X., Yu, Y., Zhu, W., Chen, Y., Zhou, W., and Gao, X. GABA-enriched Moringa oleifera leaves extract alleviates inflammation via modulation of macrophages and NK cells in mice. Frontiers in Nutrition 2023; 10: 1093036. https://doi.org/10.3389/fnut.2023.1093036.
29.    Roche, S. N., Kavanagh, E. E., and Tarlinton, D. M.The Role of NK Cells in the Response to Bacterial Infection. Nature Reviews Immunolog. 2022; 22(4): 219-233. https://doi.org/10.1038/s41577-022-00659-7.
30.    Alqahtani, W. S., and Albasher, G. Moringa oleifera Lam. extract rescues lead-induced oxidative stress, inflammation, and apoptosis in the rat cerebral cortex. Journal of Food Biochemistry. 2021; 45. https://doi.org/10.1111/jfbc.13840




Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available