Author(s):
Ashish Dadsena, Snehal Narkhede, Akansha Singhai, Varaprasad Kolla, Reecha Sahu, Tanvir Arfin, Piyush Parkhey
Email(s):
tanvirarfin@ymail.com
DOI:
10.52711/0974-360X.2025.00802
Address:
Ashish Dadsena1, Snehal Narkhede1, Akansha Singhai1, Varaprasad Kolla1, Reecha Sahu2*, Tanvir Arfin3,4, Piyush Parkhey5
1Amity Institute of Biotechnology, Amity University, Raipur 493225, India.
2Chhattisgarh Swami Vivekanand Technical University (CSVTU), Bhilai CG.
3Air Resource, Environmental Resource Planning and Management, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
4Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 21002, India.
5Trinity International, New Delhi 110017, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
The synthesis of zinc oxide nanoparticles (ZnO NPs) using Clitoria ternatea flower extract offers a sustainable and environmentally friendly approach for a range of versatile applications. This study highlights the dual functionality of these biosynthesized ZnO NPs, focusing on their effectiveness in both arsenic adsorption and antibacterial activity. The green synthesis process involves extracting ZnO NPs from Clitoria ternatea flower extract, followed by detailed characterization using advanced analytical techniques. These include field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analysis, all of which confirm the successful production of ZnO NPs with the desired properties. The antibacterial activity of the ZnO NPs was tested against Staphylococcus aureus and Pseudomonas aeruginosa, revealing strong bactericidal effects. These effects are largely attributed to the nanoparticles' small size and unique structural properties. Furthermore, both qualitative and quantitative analyses of arsenic adsorption demonstrate the ZnO NPs' efficiency in removing arsenic from solutions, underscoring their potential in water treatment applications. In conclusion, this green synthesis approach represents a promising strategy for producing multifunctional ZnO NPs with broad applications in environmental remediation and the biomedical field.
Cite this article:
Ashish Dadsena, Snehal Narkhede, Akansha Singhai, Varaprasad Kolla, Reecha Sahu, Tanvir Arfin, Piyush Parkhey. Green Sythesis of Zinc Oxide Nanoparticles from Clitoria ternatea Extract: Dual Functionality in Arsenic Adsorption and Antibacterial Applications. Research Journal Pharmacy and Technology. 2025;18(11):5563-0. doi: 10.52711/0974-360X.2025.00802
Cite(Electronic):
Ashish Dadsena, Snehal Narkhede, Akansha Singhai, Varaprasad Kolla, Reecha Sahu, Tanvir Arfin, Piyush Parkhey. Green Sythesis of Zinc Oxide Nanoparticles from Clitoria ternatea Extract: Dual Functionality in Arsenic Adsorption and Antibacterial Applications. Research Journal Pharmacy and Technology. 2025;18(11):5563-0. doi: 10.52711/0974-360X.2025.00802 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-64
8. REFERENCE:
1. Obulapuram PK, Arfin T, Mohammad F, Kumari K, Khiste SK, Al-Lohedan HA, Chavali M. Surface-enhanced biocompatibility and adsorption capacity of a zirconium phosphate-coated polyaniline composite. ACS Omega. 2021; 6(49): 33614-33626. doi:10.1021/acsomega.1c04490.
2. Arfin T, Mohammad F. Electrochemical, dielectric behavior and in vitro antimicrobial activity of polystyrene-calcium phosphate. Advances in Industrial Engineering and Management. 2014; 3(3): 25-38.
3. Obulapuram PK, Arfin T, Mohammad F, Khiste SK, Chavali M, Albalawi AN, Al-Lohedan HA. Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using Cu(I)-polyaniline composite. Polymers. 2021; 13(20): 3490. doi:10.3390/polym13203490.
4. Arfin T, Rafiuddin. Metal ion transport through a polystyrene-based cobalt arsenate membrane: application of irreversible thermodynamics and theory of absolute reaction rates. Desalination 2012; 284: 100-105. doi: 10.1016/ j.desal.2011.08.042.
5. Arfin T, Jabeen F, Kriek RJ. An electrochemical and theoretical comparison of ionic transport through a polystyrene-based titanium-vanadium (1:2) phosphate membrane. Desalination. 2011; 274: 1-3. doi: 10.1016/j.desal.2011.02.014
6. Arfin T, Singh A, Mathew N, Tirpude A. The significance of air pollution in the process of stone deterioration. Innov. Chem. Mater. Sustain. 2024; 1(1): 66-75.
7. Arfin T, Rafiuddin. Transport studies of nickel arsenate membrane. Journal of electroanalytical chemistry. 2009; 636 (1): 113-122. Doi: 10.1016/j.elechem.2009.09.019
8. Narkhede S, Philips E, Singhai A, Dadsena A, Sahu R, Arfin T, Shakya A, Parkhey P. Removal of inorganic and organic pollutants from soil by biochar applications: A sustainable approach to improve soil health. In: Kapoor RT, Sillanpaa M, Rafatullah M. (Eds.), Catalytic Applications of Biochar for Environmental Remediation: Sustainable Strategies Towards a Circular Economy. Vol. 2, ACS Publications, Washington, 2024; pp. 95-140. doi: 10.1021/bk-2024-1479.ch005
9. Sun Y, Zhang W, Li Q, Liu H, Wang X. Preparations and applications of zinc oxide based photocatalytic materials. Advanced Sensor and Energy Materials. 2023: 2(3): 100069. doi: 10.1016/j.asems.2023.100069
10. Penke YK, Kar KK. A review on multi-synergistic transition metal oxide systems towards arsenic treatment: near molecular analysis of surface-complexation (synchroton studies/modelling tools). Adv. Colloid Interface Sci. 2023; 314: 102859. doi: 10.1016/j.cis.2023.102859
11. McDermott TR, Stolz JF, Oremland RS. Arsenic and the gastrointestinal tract microbiome. Environ. Microbiol. Rep. 2020; 12: 136-159.doi: 10.1111/1758-2229.12814.
12. Bhosale RR, Kulkarni A, Gilda SS, Aloorkar NH, Osmani RA, Harkare BR. Innovative eco-friendly approaches for green synthesis of silver nanoparticles. Int. J. Pharm. Sci. Nanotechnol. 2014; 7: 2328-2337.
13. Varghese RM, Kumar AS, Shanmugam R. Antimicrobial activity of zinc oxide nanoparticles synthesized using ocimum tenuiflum and ocimum gratissimum herbal formulation against oral pathogens. Cureus 2024; 16(2): e53562. doi: 107759/ cureus.53562
14. Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: eco-friendly nanomaterials synthesis for soil-plant systems, food safety, and sustainability. Sci. Total Environ. 2024; 926: 171862. doi: 10.1016/j.scitotenv.2024.171862
15. Nath BK, Chaliha C, Kalita E, Kalita MC. Synthesis and characterization of ZnO: CeO2: nanocellulose: PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydrate Polymers. 2016; 148: 397-405. doi: 10.1016/j.carbpol.2016.03.091
16. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J. Infect. Public Health. 2017; 10(4): 369-378. doi: 10.1016/ j.jiph.2016.08.007
17. El-Fallal AA, El-Katony TM, Dahap HE, El-Gharawy HM. Effect of phosphorus form and culturing mode on mycelial growth of Pleurotus pulmonarius and Pleurotus floridanus on rice straw. Sci. J. Damietta Fac. Sci. 2023; 13(3): 53-62. doi: 10.21608/ sjdfs.2023.222643.1118
18. Albalghiti E, Stabryla LM, Gilberston LM, Zimmerman JB. Towards resolution of antibacterial mechanisms in metal and metal oxide nanomaterials: a meta-analysis of the influence of study design on mechanistic conclusions. Environ. Sci.: Nano. 2021; 8: 37-66. doi: 10.1039/D0EN00949K
19. Arfin T, Falch A, Kriek RJ. Evaluation of charge density and the theory for calculating membrane potential for a nano-composite nylon-6,6 nickel phosphate membrane. Phys. Chem. Chem. Phys. 2012; 14(48): 16760-16769. doi: 10.1039/C2CP42683H
20. Mohammad F, Arfin T, Al-lohedan HA. Enhance biosorption and electrochemical performance of sugarcane bagasse derived a polylactic acid-graphene oxide-CeO2 composite. Mater Chem. Phys. 2019; 229: 117-123. Doi: 10.1016/ j.matchemphys.2019.02.085
21. Arfin T, Bushra R, Mohammad F. Electrochemical sensor for the sensitive detection of o-nitrophenol using graphene oxide-poly(ethyleneimine) dendrimer-modified glassy carbon electrode. Graphene Technology. 2026; 1(1): 1-15. doi: 10.1007/s41127-016-0002-1
22. Arfin T, Bhaisare DA, Waghmare SS. Development of a PANI/Fe(NO3)2 nanomaterial for reactive orange 16 (RO16) dye removal. Anal. Methods. 2021; 13 (44): 5309-5327. doi: 10.1039/D1AY01402A
23. Yan S, Wu F, Zhou S, Yang J, Tang X, Ye W. Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC Plant Biol. 2021; 21: 150.
24. Yan H, Gui T, Dai J, Guo Q, Zhang Z, Qiu X. A unified generative framework for various NER subtasks. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2021; 5808–5822.
25. World Health Organization. Arsenic in drinking water. Retrieved from https://www.who.int/news-room/fact-sheets/detail/arsenic. 2021.
26. Jha S, Rani R, Singh S. Biogenic zinc oxide nanoparticles and their biomedical applications: a review. J. Inorg. Organomet. Polym. Mater. 2023; 33: 1437–1452. Doi: 10.1007/s10904-023-02550-x
27. Mojiri A, Razmi E, KarimiDermani B, Rezania S, Kasmuri N, Vakili MT. Adsorption methods for arsenic removal in water bodies: a critical evaluation of effectiveness and limitations. Front. Water. 2024; 6: 1301648. Doi: 10.3389/frwa.2024.1301648
28. Khan QU, Begum N, Rehman ZU, Khan AU, Tahir K, El Din ESM, Javed MS. Development of efficient and recyclable ZnO–CuO/g–C3N4 nanocomposite for enhanced adsorption of arsenic from wastewater. Nanomaterials. 2022; 12(22): 3984. Doi: 10.3390/nano12223984
29. Jadoun S, Yañez J, Aepuru R, Sathish M, Jangid N, Chinnam S. Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. Environ. Sci. Pollut. Res. 2024; 31(13): 19123-19147. doi: 10.1007/s11356-024-32357-3.
30. Chandrasekaran S, Anbazhagan V, Anusuya S. Green route synthesis of ZnO nanoparticles using Senna auriculata aqueous flower extract as reducing agent and evaluation of its antimicrobial, antidiabetic, and cytotoxic activity. Appl. Biochem. Biotechnol. 2023; 195(6): 3840-3854. doi:10.1007/s12010-022-03900-0.
31. Arfin T, Rangari SN. Graphene oxide-ZnO nanocomposite modified electrode for the detection of phenol. Anal. Methods. 2018; 10(3): 347-358. doi: 10.1039/C7AY02650A
32. Onwudiwe DC, Arfin T, Strydom CA. Surfactant mediated synthesis of ZnO nanospheres at elevated temperature, and their dielectric properties. Superlattices Microstruct. 2015; 81: 215-225. doi: 10.1016/j.spmi.2015.02.003.
33. Barzinjy AA, Azeez HH. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate. SN Appl. Sci. 2020; 2(5): 9911. doi: 10.1007/s42452-020-2813-1
34. Azeez AA, Barzinjy AA. Biosynthesis of zinc oxide nanoparticles using Apium graveolens L. leaf extract and its use in removing organic pollutants in water. Desalination Water Treat. 2020; 190: 179-192. Doi:10.5004/dwt.2020.25648.
35. Rasmussen MK, Pedersen JN, Marie Rodolphe. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020; 11(1): 2337.
36. Siddiqi KS, Rahman A, Tajuddin, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018; 13: 141. doi: 10.1186/s11671-018-2532-3
37. El-Fallal AA, Elfayoumy RA, El-Zahed MM. Antibacterial activity of biosynthesized zinc oxide nanoparticles using kombucha extract. SN Appl. Sci. 2023; 5: 332. doi:10.1007/s42452-023-05546-x
38. Gudkov SV, Burmistrov DE, Serov DA, Rebezov MB, Semenova AA, Lisitsyn AB. A mini-review of antibacterial properties of ZnO nanoparticles. Front. Phys. 2021; 9: 641481. doi: 10.3389/fphy.2021.641481
39. Mostafa MG, Hoinkis J. Nanoparticle adsorbents for arsenic removal from drinking water: a review. International Journal of Environmental Science, Management and Engineering Research. 20212; 1(1): 20-31.