Author(s):
Juliet Tangka, Jovie M. Dumanauw, Michael Vallery Loueis Tumbol, Diana Lyrawati
Email(s):
tangka.juliet@poltekkes-manado.ac.id
DOI:
10.52711/0974-360X.2025.00803
Address:
Juliet Tangka1*, Jovie M. Dumanauw1, Michael Vallery Loueis Tumbol1, and Diana Lyrawati2
1Department of Pharmacy, Manado Health Polytechnic, Ministry of Health, Manado, Indonesia.
2Department of Pharmacy, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 11,
Year - 2025
ABSTRACT:
The potential of red Gedi leaves (Abelmoschus manihot L. Medic), in controlling glucose homeostasis in conditions of insulin resistance are thought to work through molecular mechanisms on insulin target tissue receptors, including Glucose Transporter (GLUT) 4 and Insulin receptor substrate (IRS), but this has not been studied. Therefore, this study aims to prove the in vivo effect of ethanol extract of red Gedi leaves (EEGL) on insulin target tissue receptors, IRS-1, and GLUT-4 in diabetic rats. Rats model for Type 2 DM were prepared by High Fat Diet and High Fructose 25% also induced with low dose streptozotocin (STZ) 25 mg/kg BW. EEGL was given once a day for 4 weeks. At the end of the treatment blood glucose, insulin, IRS-1, and GLUT-4 levels by using ELISA. Pancreas and muscle histopathology was carried out using the HE-staining method. Results showed that EEGL reduced fasting blood glucose and plasma insulin (p<0.05, in parallel with increased levels of IRS-1, and GLUT-4. Post-treatment IRS 1 level in all groups higher than DM control rats (p<0.05) and reach the normal values. The histological profiles of muscle tissues and pancreas of EEGL treated animals were also improved compared to the diabetes and pioglitazone groups, their shape and number were similar to that of normal control groups. The results of this study show that ethanol extract of red Gedi leaves increase insulin sensitivity by increasing IRS-1 and GLUT-4 levels in DM type 2 rats. Further comprehensive pharmacodynamic effect on anti-diabetic molecular targets and toxicity studies need to be carried out to ensure the effect and safety of red Gedi leaves prior clinical trials of EEGM as one of herbal antidiabetics.
Cite this article:
Juliet Tangka, Jovie M. Dumanauw, Michael Vallery Loueis Tumbol, Diana Lyrawati. Red gedi Leaves Extract Increases Insulin Sensitivity Through IRS-1 and GLUT-4. Research Journal Pharmacy and Technology. 2025;18(11):5571-6. doi: 10.52711/0974-360X.2025.00803
Cite(Electronic):
Juliet Tangka, Jovie M. Dumanauw, Michael Vallery Loueis Tumbol, Diana Lyrawati. Red gedi Leaves Extract Increases Insulin Sensitivity Through IRS-1 and GLUT-4. Research Journal Pharmacy and Technology. 2025;18(11):5571-6. doi: 10.52711/0974-360X.2025.00803 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-11-65
REFERENCES:
1. Nurrani L, Kinho J. Utilization of natural plant by the North Sulawesi community as a lowering of diabetic. International Conference on Forest and Biodiversity. 2013: 443-452.
2. Tangka J, Barung EN, Lyrawati D, Soeatmadji D, Nurdiana N. Dpp-iv inhibitory activity of the ethanolic extract of red gedi leaves abelmoschus manihot l. Medic. Open Access Maced J Med Sci. 2022; 10: 207-213 https://doi.org/10.3889/oamjms.2022.8356.
3. Tangka J, Barung EN, Lyrawati D, Soeatmadji DW, Nurdiana. Identification of metabolite compounds from ethanolic extract of the red gedi leaves (abelmoschus manihot l. Medik) by lc-esi-ms. Res J Pharm Tech. 2021; 15: 5164-5167 http://dx.doi.org/10.52711/0974-360X.2022.00869.
4. Leto D, Saltiel AR. Regulation of glucose transport by insulin: Traffic control of glut4. Nature Reviews Molecular Cell Biology. 2012; 13: 383-396 https://doi.org/10.1038/nrm3351.
5. Myers MG, Jr., White MF. The new elements of insulin signaling. Insulin receptor substrate-1 and proteins with sh2 domains. Diabetes. 1993;42:643-650 https://doi.org/10.2337/diab.42.5.643.
6. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, et al. Structure of the insulin receptor substrate irs-1 defines a unique signal transduction protein. Nature. 1991; 352: 73-77 https://doi.org/10.1038/352073a0.
7. Draznin B. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α: The two sides of a coin. Diabetes. 2006; 55: 2392-2397 https://doi.org/10.2337/db06-0391.
8. Singh A, Singh S, Anbarasu A. In silico evaluation of non-synonymous snps in irs-1 gene associated with type ii diabetes mellitus. Research Journal of Pharmacy and Technology. 2018; 11: 1957-1961 https://doi.org/10.5958/0974-360X.2018.00363.3.
9. Kaburagi Y, Satoh S, Tamemoto H, Yamamoto-Honda R, Tobe K, Veki K, et al. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and glut4 translocation in primary adipocytes. The Journal of biological chemistry. 1997; 272: 25839-25844 https://doi.org/10.1074/jbc.272.41.25839.
10. van Gerwen J, Shun-Shion AS, Fazakerley DJ. Insulin signalling and glut4 trafficking in insulin resistance. Biochemical Society Transactions. 2023; 51: 1057-1069 10.1042/bst20221066.
11. Foster LJ, Klip A. Mechanism and regulation of glut-4 vesicle fusion in muscle and fat cells. American Journal of Physiology-Cell Physiology. 2000; 279: C877-C890 https://doi.org/10.1152/ajpcell.2000.279.4.C877.
12. Tirta AP, Solihat I, Roziafanto AN, Djanis RL, Mapiliandari I. Multi-step maceration extraction and pharmacological evaluation of abelmoschus manihot (l.) medik. Research Journal of Pharmacy and Technology. 2024; 17: 389-395 https://doi.org/10.52711/0974-360X.2024.00061.
13. Barrière DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K, et al. Combination of high-fat/high-fructose diet and low-dose streptozotocin to model long-term type-2 diabetes complications. Sci Rep. 2018; 8: 424 https://doi.org/10.1038/s41598-017-18896-5.
14. Lolok N, Sahidin I, Sumiwi A, Muhtadi A. Antidiabetes effect of noni fruit (morinda citrifolia l.) on mice with oral glucose tolerance method and streptozotocin induction method. Research Journal of Pharmacy and Technology. 2021; 14: 5067- https://doi.org/10.52711/0974-360X.2021.00883.
15. Patil OA, Patil IS, Vambhurkar GB, Randive DS, Bhutkar MA, Mohite SK. Uv spectroscopic degradation study of pioglitazone hydrochloride. Asian Journal of Pharmaceutical Analysis. 2018; 8: 125-128 https://doi.org/10.5958/2231-5675.2018.00023.6.
16. Handayani W, Andarini S, Lyrawati D, Rudijanto A. Soy milk and ginger (sulehe) increase ppar-γ expression in a rat model of insulin resistance. 2018.
17. Solikhah TI, Solikhah GP. Antihyperlipidemic and histopathological pancreas analysis of muntingia calabura l. Fruit extract on alloxan-induced diabetic mice. Research Journal of Pharmacy and Technology. 2023; 16: 4841-4846 https://doi.org/10.52711/0974-360X.2023.00785.
18. Babu S, Krishnan M, Rajagopal P, Periyasamy V, Veeraraghavan V, Govindan R, et al. Beta-sitosterol attenuates insulin resistance in adipose tissue via irs-1/akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. European Journal of Pharmacology. 2020; 873: 173004 https://doi.org/10.1016/j.ejphar.2020.173004.
19. Wang J, Huang M, Yang J, Ma X, Zheng S, Deng S, et al. Anti-diabetic activity of stigmasterol from soybean oil by targeting the glut4 glucose transporter. Food and Nutrition Research. 2017; 61: 1364117 https://doi.org/10.1080/16546628.2017.1364117.
20. Stockli J, Fazakerley DJ, James DE. Glut4 exocytosis. Journal of Cell Science. 2011; 124: 4147-4159 https://doi.org/10.1242/jcs.097063.
21. Chou SY, Chan L, Chung CC, Chiu JY, Hsieh YC, Hong CT. Altered insulin receptor substrate 1 phosphorylation in blood neuron-derived extracellular vesicles from patients with parkinson's disease. Frontiers in cell and developmental biology. 2020; 8: 564641 https://doi.org/10.3389/fcell.2020.564641.
22. Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. New England Journal of Medicine. 2018; 379: 958-966. https://doi.org/10.1056/NEJMra1704286.
23. Koester AM, Geiser A, Bowman PRT, van de Linde S, Gadegaard N, Bryant NJ, et al. Glut4 translocation and dispersal operate in multiple cell types and are negatively correlated with cell size in adipocytes. Sci Rep. 2022; 12: 20535 10.1038/s41598-022-24736-y.
24. Chadt A, Al-Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflügers Archiv - European Journal of Physiology. 2020; 472: 1273-1298 https://doi.org/10.1007/s00424-020-02417-x.
25. Stenkula KG, Lizunov VA, Cushman SW, Zimmerberg J. Insulin controls the spatial distribution of glut4 on the cell surface through regulation of its postfusion dispersal. Cell Metabolism. 2010; 12: 250-259 https://doi.org/10.1016/j.cmet.2010.08.005.
26. Garvey WT, Maianu L, Hancock JA, Golichowski AM, Baron A. Gene expression of glut4 in skeletal muscle from insulin-resistant patients with obesity, igt, gdm, and niddm. Diabetes. 1992; 41: 465-475 https://doi.org/10.2337/diab.41.4.465.
27. Vlassara H, Uribarri J. Advanced glycation end products (age) and diabetes: Cause, effect, or both? Current diabetes reports. 2014; 14: 453 https://doi.org/10.1007/s11892-013-0453-1.
28. Bhat BM, Raghuveer C, D’Souza V, Ilanthodi S, Manjrekar PA. Delayed structure-function alterations in pancreas and liver of rodent diabetic model treated with salacia oblonga. Research Journal of Pharmacy and Technology. 2023; 16: 879-884 https://doi.org/10.52711/0974-360X.2023.00149.
29. Sasaki H, Saisho Y, Inaishi J, Itoh H. Revisiting regulators of human β-cell mass to achieve β-cell–centric approach toward type 2 diabetes. Journal of the Endocrine Society. 2021; 510.1210/jendso/bvab128.
30. Ying W, Lee YS, Dong Y, Seidman JS, Yang M, Isaac R, et al. Expansion of islet-resident macrophages leads to inflammation affecting β cell proliferation and function in obesity. Cell Metabolism. 2019; 29: 457-474.e455 https://doi.org/10.1016/j.cmet.2018.12.003.
31. Yousaf A, Shahid S. The study of anethum graveolens l. (dill) in the case of diabetes mellitus (dm). Asian Journal of Research in Pharmaceutical Sciences. 2020; 10: 248-256 https://doi.org/10.5958/2231-5659.2020.00045.4.
32. Anggi V, Adikusuma W. Total antioxidant and in-vitro cytotoxic of abelmoschus manihot (l.) medik from palu of central sulawesi and doxorubicin on 4t1 cells line and vero cells. Research Journal of Pharmacy and Technology. 2019; 12: 5472-5476 https://doi.org/10.5958/0974-360X.2019.00949.1.
33. Luan F, Wu Q, Yang Y, Lv H, Liu D, Gan Z, et al. Traditional uses, chemical constituents, biological properties, clinical settings, and toxicities of abelmoschus manihot l.: A comprehensive review. Frontiers in Pharmacology. 2020; 11: 1068 https://doi.org/10.3389/fphar.2020.01068.
34. Cai H-D, Su S-L, Guo S, Zhu Y, Qian D-W, Tao W-W, et al. Effect of flavonoids from abelmoschus manihot on proliferation, differentiation of 3t3-l1 preadipocyte and insulin resistance. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica. 2016; 41: 4635-4641.
35. Aguayo-Mazzucato C, Bonner-Weir S. Pancreatic β cell regeneration as a possible therapy for diabetes. Cell Metabolism. 2018; 27: 57-67 https://doi.org/10.1016/j.cmet.2017.08.007.
36. CM L, Rani GS, J L. Review article of multifaceted intervention on diabetes mellitus. International Journal of Advances in Nursing Management. 2024; 12. https://doi.org/10.52711/2454-2652.2024.00047.
37. MK M, US S, H A. The ascent of polyherbal formulation in the treatment of diabetes mellitus. Research Journal of Pharmacognosy and Phytochemistry. 2020; 12: 256-260. https://doi.org/10.5958/0975-4385.2020.00042.4.