Author(s):
Payal Shah, Gaurang Shah
Email(s):
gaurang.shah@lmcp.ac.in
DOI:
10.52711/0974-360X.2025.00830
Address:
Payal Shah1,2, Gaurang Shah2*
1Research Scholar, Gujarat Technological University, Ahmedabad.
2Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 12,
Year - 2025
ABSTRACT:
The NADPH oxidase (NOX) enzyme family is essential for producing reactive oxygen species (ROS), which act as signaling molecules in numerous physiological functions but can also lead to diseases related to oxidative stress when improperly regulated. NOX2, a crucial isoform mainly found in phagocytic cells, aids in microbial destruction during the respiratory burst through the generation of superoxide and hydrogen peroxide. Nonetheless, its excessive activation has been linked to cardiovascular illnesses, neurodegenerative conditions, and cancer. Utilizing the structural insights from the P22Phox-P47Phox complex (PDB ID: 1WLP), Cytochrome b558 (PDB ID: 1NG2), and NOX2 regulatory domains (PDB ID: 3A1F), this research explores the potential of phytochemicals to act as NOX2 inhibitors. Utilizing in-silico examinations, significant phytochemicals were discovered that exhibited high binding affinity against NOX2. These results establish a basis for creating specific treatments for disorders associated with oxidative stress and inflammation.
Cite this article:
Payal Shah, Gaurang Shah. Targeting NOX2: An In-Silico approach with Phytoconstituents to Alleviate Oxidative Stress. Research Journal Pharmacy and Technology. 2025;18(12):5758-2. doi: 10.52711/0974-360X.2025.00830
Cite(Electronic):
Payal Shah, Gaurang Shah. Targeting NOX2: An In-Silico approach with Phytoconstituents to Alleviate Oxidative Stress. Research Journal Pharmacy and Technology. 2025;18(12):5758-2. doi: 10.52711/0974-360X.2025.00830 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-20
5. REFERENCES:
1. Abliz A. Chen C. Deng W. Wang W. Sun R. NADPH oxidase inhibitor apocynin attenuates PCB153-induced thyroid injury in rats. Int J Endocrinol. 2016; 2016: 1-9. https://doi.org/10.1155/2016/8354745.
2. Altenhöfer S. Radermacher KA. Kleikers PWM. Wingler K. Schmidt HHHW. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement. Antioxid Redox Signal. 2015; 23(5): 406–27. https://doi.org/10.1089/ars.2013.5814.
3. Ansari MA. Scheff SW. NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med. 2011; 51(1): 171–8. https://doi.org/10.1016/j.freeradbiomed.2011.03.025.
4. Bánfi B. Molnár G. Maturana A. Steger K. Hegedûs B. Demaurex N et al. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem. 2001; 276(40): 37594–601. https://doi.org/10.1074/jbc.M103034200.
5. Bedard K. Krause KH. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 2007; 87(1): 245–313. https://doi.org/10.1152/physrev.00044.2005.
6. Block K. Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer. 2012; 12(9): 627–37. https://doi.org/10.1038/nrc3339.
7. Cipriano A. Viviano M. Feoli A. Milite C. Sarno G. Castellano S et al. NADPH oxidases: From molecular mechanisms to current inhibitors. J Med Chem. 2023; 66(17): 11632–55. https://doi.org/10.1021/acs.jmedchem.3c00770.
8. Dahan I. Pick E. Strategies for identifying synthetic peptides to act as inhibitors of NADPH oxidases. Cell Mol Life Sci. 2012; 69(14): 2283–305. https://doi.org/10.1007/s00018-012-1007-4.
9. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment, Release 2021. San Diego: Dassault Systèmes; 2020.
10. DeLeo FR. Allen LAH. Apicella M. Nauseef WM. NADPH oxidase activation and assembly during phagocytosis. J Immunol. 1999; 163(12): 6732–40. https://doi.org/10.4049/jimmunol.163.12.6732.
11. Gabig TG. Babior BM. The O2(-)-forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme. J Biol Chem. 1979; 254(18): 9070–4.
12. Gao HM. Zhou H. Hong JS. NADPH oxidases: Novel therapeutic targets for neurodegenerative diseases. Trends Pharmacol Sci. 2012; 33(6): 295–303. https://doi.org/10.1016/j.tips.2012.03.008.
13. Kumar Tiwari A. Gandhi V. Agarwal S. Tyagi V. Agarwal V. Jindal D et al. In-silico validation of apocynin and NADPH oxidase (NOX) enzyme for inhibiting ROS injuries. Mater Today Proc. 2023; 80(xxxx): 2375–7. https://doi.org/10.1016/j.matpr.2021.06.361.
14. Moghadam ZM. Henneke P. Kolter J. From flies to men: ROS and the NADPH oxidase in phagocytes. Front Cell Dev Biol. 2021; 9: 1–14. https://doi.org/10.3389/fcell.2021.628991.
15. Morris GM. Ruth H. Lindstrom W. Sanner MF. Belew RK. Goodsell DS et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16): 2785–91. https://doi.org/10.1002/jcc.21256.
16. Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochem Cell Biol. 2004; 122(4): 277–91. https://doi.org/10.1007/s00418-004-0679-8.
17. O’Boyle NM. Banck M. James CA. Morley C. Vandermeersch T. Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011; 3(10): 33. https://doi.org/10.1186/1758-2946-3-33.
18. Pick E. Cell-free NADPH oxidase activation assays: A triumph of reductionism. In: NADPH Oxidases Methods and Protocols. 2020: 325–411. https://doi.org/10.1007/978-1-0716-0154-9_23.
19. Poznyak AV. Grechko AV. Orekhova VA. Khotina V. Ivanova EA. Orekhov AN. NADPH oxidases and their role in atherosclerosis. Biomedicines. 2020; 8(7): 206. https://doi.org/10.3390/biomedicines8070206.
20. Steffen C. Thomas K. Huniar U. Hellweg A. Rubner O. Schroer A. TmoleX: A graphical user interface for TURBOMOLE. J Comput Chem. 2010; 31(16): 2967–70. https://doi.org/10.1002/jcc.21576.
21. Sumimoto H. Miyano K. Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005; 338(1): 677–86. https://doi.org/10.1016/j.bbrc.2005.08.210.
22. Vermot A. Petit-Härtlein I. Smith SME. Fieschi F. NADPH oxidases (Nox): An overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants. 2021; 10(6): 1–19. https://doi.org/10.3390/antiox10060890.