Author(s): Dhadhang Wahyu Kurniawan, Syifa Khairunnisa, Tarwadi, Damai Ria Setyawati, Febby Nurdiya Ningsih

Email(s): dhadhang.kurniawan@unsoed.ac.id

DOI: 10.52711/0974-360X.2025.00813   

Address: Dhadhang Wahyu Kurniawan1,2,3*, Syifa Khairunnisa1, Tarwadi3, Damai Ria Setyawati3, Febby Nurdiya Ningsih3
1Department of Pharmacy, Faculty of Health Sciences Jenderal Soedirman University, Jl. dr. Suparno Kampus Unsoed Karangwangkal, Purwokerto, Central Java, Indonesia.
2Graduate School Universitas Jenderal Soedirman, Jl. Dr. Suparno Kampus Unsoed Karangwangkal, Purwokerto, Central Java, Indonesia.
3Research Centre for Vaccine and Drug, National Research and Innovation Agency (BRIN), Building 610, LAPTIAB – Puspiptek Area, Setu, South Tangerang, Banten, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 12,     Year - 2025


ABSTRACT:
Complexing liposomes with polymers enhances the structural integrity and stability of the liposome membrane. Alginate, a biocompatible, biodegradable, and non-toxic polymer, emerges as a promising candidate for such complexation with liposomes. Notably, sodium alginate exhibits immunostimulant activity due to its inclusion of pathogen-associated molecular patterns (PAMPs), which are efficiently recognized by the body's immune receptors. In this study, liposomes were integrated with alginate nanoparticles through the addition of calcium chloride (CaCl2) at three distinct concentrations (0.16%, 0.32%, 0.64%). The resultant liposome-alginate nanoparticles were characterized using a particle size analyzer (PSA) to determine their size, size distribution, and zeta potential. The encapsulation efficiency of lysozyme within the liposome-alginate nanoparticles was quantified utilizing a UV-visible spectrophotometer. Furthermore, this combination was assessed for its biological activity, specifically nitric oxide (NO) release and cell viability in vitro, using the RAW 264.7 cell line. Liposomes complexed with alginate nanoparticles at CaCl2 concentrations of 0.16%, 0.32%, and 0.64% exhibited particle sizes of 281.7nm, 257nm, and 274.1nm, respectively, with polydispersity indices (PDI) of 0.389, 0.248, and 0.365, and zeta potentials of -0.874mV, -2.404mV, and -0.256mV, respectively. The data indicated that alginate concentration significantly influenced NO release (p<0.05) and RAW 264.7 cell viability (p<0.05). The incorporation of alginate into liposome formulations as a vaccine adjuvant not only enhances the physicochemical properties but also augments the efficacy of liposome adjuvants in stimulating NO production and promoting RAW 264.7 cell viability.


Cite this article:
Dhadhang Wahyu Kurniawan, Syifa Khairunnisa, Tarwadi, Damai Ria Setyawati, Febby Nurdiya Ningsih. Preparation, Characterization and In Vitro Evaluation of Liposome-Coated Alginate Nanoparticle as Immune Adjuvant Candidate in RAW 264.7 Cells. Research Journal Pharmacy and Technology. 2025;18(12)5633-9: doi: 10.52711/0974-360X.2025.00813

Cite(Electronic):
Dhadhang Wahyu Kurniawan, Syifa Khairunnisa, Tarwadi, Damai Ria Setyawati, Febby Nurdiya Ningsih. Preparation, Characterization and In Vitro Evaluation of Liposome-Coated Alginate Nanoparticle as Immune Adjuvant Candidate in RAW 264.7 Cells. Research Journal Pharmacy and Technology. 2025;18(12)5633-9: doi: 10.52711/0974-360X.2025.00813   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-3


REFERENCES: 
1.    Larson HJ, Lin L, Goble R. Vaccines and the social amplification of risk. Risk Anal. Jul 2022; 42(7): 1409-1422. doi:10.1111/risa.13942
2.    Brito LA, Malyala P, O'Hagan DT. Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol. Apr 2013; 25(2): 130-45. doi:10.1016/j.smim.2013.05.007
3.    Sarkar I, Garg R, van Drunen Littel-van den Hurk S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev Vaccines. May 2019; 18(5): 505-521. doi:10.1080/14760584.2019.1604231
4.    Tandrup Schmidt S, Foged C, Korsholm KS, Rades T, Christensen D. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators. Pharmaceutics. Mar. 10 2016; 8(1). doi:10.3390/pharmaceutics8010007
5.    Khare S, Alexander A, Ajazuddin, Amit N. Biomedical Applications of Nanobiotechnology for Drug Design, Delivery and Diagnostics. Research J Pharm and Tech. 2014; 7(8): 915-925. 
6.    Sriwidodo, Umar AK, Wathoni N, Zothantluanga JH, Das S, Luckanagul JA. Liposome-polymer complex for drug delivery system and vaccine stabilization. Heliyon. Feb 2022; 8(2): e08934. doi:10.1016/j.heliyon.2022.e08934
7.    Srinivas L, Manikanta V, Jaswitha M. Protein and Peptide Drug Delivery-A Brief Review. Research Journal of Pharmacy and Technology. 2019; 12(3). doi:10.5958/0974-360x.2019.00230.0
8.    Chauhan SB, Gupta V. Recent Advances in Liposome. Research Journal of Pharmacy and Technology. 2020; 13(4). doi:10.5958/0974-360x.2020.00369.8
9.    Rao M, Peachman KK, Alving CR. Liposome Formulations as Adjuvants for Vaccines. Curr Top Microbiol Immunol. 2021; 433: 1-28. doi:10.1007/82_2020_227
10.    Gupta NP, Damodharan N. pH-Responsive Polymers and its Application in Drug Delivery System and Pharmaceutical Field. Research Journal of Pharmacy and Technology. 2019; 12(2). doi:10.5958/0974-360x.2019.00159.8
11.    Chen CH, Lin YL, Liu YK, et al. Liposome-based polymer complex as a novel adjuvant: enhancement of specific antibody production and isotype switch. Int J Nanomedicine. 2012; 7: 607-21. doi:10.2147/IJN.S28097
12.    Jain D, Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm. Dec 2014; 40(12): 1576-84. doi:10.3109/03639045.2014.917657
13.    M K, Pulikottil MJ, BM NM, R S, A R. Preparation and Characterisation of Alginate Coated Chitosan Microspheres for Bacterial Vaccines. Research J Pharm and Tech. 2010; 3(2): 503-506. 
14.    Asriatno O, Nawangsih AA, Astuti RI, Wahyudi AT. Streptomyces–Alginate Beads Formula Promote Maize Plant Growth and Modify the Rhizosphere Microbiome. Jordan Journal of Biological Sciences. 2023; 16(03): 537-546. doi:10.54319/jjbs/160316
15.    Paredes-Juarez GA, de Haan BJ, Faas MM, de Vos P. The role of pathogen-associated molecular patterns in inflammatory responses against alginate based microcapsules. J Control Release. Dec 28 2013; 172(3): 983-92. doi:10.1016/j.jconrel.2013.09.009
16.    Zhu L, Ge F, Yang L, et al. Alginate Particles with Ovalbumin (OVA) Peptide Can Serve as a Carrier and Adjuvant for Immune Therapy in B16-OVA Cancer Model. Med Sci Monit Basic Res. Apr 28 2017; 23: 166-172. doi:10.12659/msmbr.901576
17.    Gomaa AI, Martinent C, Hammami R, Fliss I, Subirade M. Dual Coating of Liposomes as Encapsulating Matrix of Antimicrobial Peptides: Development and Characterization. Frontiers in Chemistry. 2017; 5doi:10.3389/fchem.2017.00103
18.    Kurniawan DW, Booijink R, Pater L, et al. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release. Dec 10 2020; 328: 640-652. doi:10.1016/j.jconrel.2020.09.041
19.    Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J Control Release. Jun 10 2019; 303: 130-150. doi:10.1016/j.jconrel.2019.04.025
20.    Pambudi S, Mardliyati E, Rahmani S, et al. The Potency of Aluminum Hydroxide Nanoparticles for Dengue Subunit Vaccine Adjuvant. Microbiology Indonesia. 2018; 12(3): 99-105. doi:10.5454/mi.12.3.5
21.    Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc. Jun 1 2018; 2018; (6). doi:10.1101/pdb.prot095505
22.    Kurniawan DW, Jajoriya AK, Dhawan G, et al. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. J Control Release. Oct 28 2018; 288: 227-238. doi:10.1016/j.jconrel.2018.09.004
23.    Subagiyo A, Widyanto A, Ardiansyah I, Saputri FW, Kurniawan DW. The Effectiveness of Various Citronella Oil Nanogel Formulations as a Repellent of Aedes Aegypti Mosquito. International Journal of Applied Pharmaceutics. 2024: 101-105. doi:10.22159/ijap.2024v16i2.50048
24.    Daemi H, Barikani M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica. 2012; 19(6): 2023-2028. doi:10.1016/j.scient.2012.10.005
25.    Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des. 2019; 25(11): 1312-1334. doi:10.2174/1381612825666190425163424
26.    K. VP, C. S, K. S, K. K, K.P B. Preparation and Characterization of Chitosan Microspheres Containing a Model Antigen. Research J Pharm and Tech 2011;4(10):1630-1632. 
27.    Dilip Varma P, Deoprasad Shahu Y, Yende S, et al. A Brief Review on Lysozyme’s Pharmacology and Drug-Carrying Capacity. Research Journal of Pharmacy and Technology. 2022: 5886-5894. doi:10.52711/0974-360x.2022.00993
28.    Sravani K, Masthanamma SK, Prasanna VL, Sowmya DK, Tanuja A. Analytical Reagents used in Chemical and Spectrophotometric Analysis. Research Journal of Pharmacy and Technology. 2015; 8(2)doi:10.5958/0974-360x.2015.00020.7
29.    Kruger NJ. The Protein Protocols Handbook. In: Walker JM, ed. 3rd ed. Humana Press; 2009: 9-15: chap The Bradford Method for Protein Quantitation.
30.    Varghese N, Sudheer P, John S, Babu R, Manju SV. In vitro Evaluation of Isosorbide Dinitrate Calcium Alginate Controlled Drug Delivery Beads and Its Modified Form Using Different Cross-Linking Agents. Research J Pharm and Tech. 2011; 4(5): 719-724. 
31.    Machado AR, Silva PMP, Vicente AA, Souza-Soares LA, Pinheiro AC, Cerqueira MA. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers (Basel). Nov 6 2022; 14(21). doi:10.3390/polym14214759
32.    Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm. Aug 2 2021; 18(8): 2867-2888. doi:10.1021/acs.molpharmaceut.1c00447
33.    Khokra SL, Parashar B, Dhamija HK, Bala M. Immunomodulators: Immune System Modifiers. Research J Pharm and Tech. 2012; 5(2): 169-174. 
34.    Ueno M, Cho K, Nakazono S, et al. Alginate oligomer induces nitric oxide (NO) production in RAW264.7 cells: elucidation of the underlying intracellular signaling mechanism. Bioscience, Biotechnology, and Biochemistry. 2015; 79(11): 1787-1793. doi:10.1080/09168451.2015.1052768
35.    Shreshtha S, Sharma P, Kumar P, Sharma R, Singh SP. Nitric Oxide: It’s Role in Immunity. Journal of Clinical and Diagnostic Research. 2018; doi:10.7860/jcdr/2018/31817.11764
36.    Zhang W, Wang L, Liu Y, et al. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials. Jul 2014; 35(23): 6086-97. doi:10.1016/j.biomaterials.2014.04.022
37.    Mahasneh AM. Bionanotechnology: The Novel Nanoparticles Based Approach for Disease Therapy. Jordan Journal of Biological Sciences. 2013; 6(4): 246 - 251. 
38.    Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol. 2020; 11: 585146. doi:10.3389/fimmu.2020.585146
39.    Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. Jan 24 2014; 289(4): 2457-68. doi:10.1074/jbc.M113.521161
40.    Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res A. Aug 2009; 90(2): 411-8. doi:10.1002/jbm.a.32096



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available