Author(s):
Sonam Ahuja, Patil Bhagyashri Nemichandra
Email(s):
sonam.ahuja82106@paruluniversity.ac.in
DOI:
10.52711/0974-360X.2025.00847
Address:
Sonam Ahuja1*, Patil Bhagyashri Nemichandra2
1Associate Professor, Department of Chemical Science, Parul Institute of Applied Science, Faculty of Applied Scineces, Parul University Limda - 391760, Vadodara, Gujarat, India.
2Department of Chemical Science, Parul Institute of Applied Science, Faculty of Applied Scineces, Parul University Limda - 391760, Vadodara, Gujarat, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 12,
Year - 2025
ABSTRACT:
In this work, Gelatin-PEG (polyethylene glycol) composite hydrogels are investigated as vaginal drug delivery vehicles, taking advantage of PEG's improved solubility and stability as well as Gelatin's biocompatibility and biodegradability. Using glutaraldehyde as a crosslinking agent, hydrogels were created in different ratios (20:0, 19:1, 18:2, 17:3, 16:4). Metronidazole (MZ) was added for its antibacterial properties against E. coli. The hydrogels' in vitro metronidazole (MZ) release behaviour was closely studied. Furthermore, the antibacterial activity of the MZ-loaded hydrogels was assessed against E. coli, a bacterium commonly associated with bacterial vaginosis (BV). Swelling, humidity, UV-visible spectroscopy, FTIR, SEM, TGA, antibacterial, anti-inflammatory, and haemolysis tests were used for characterisation. The results showed stability, controlled swelling, thermal stability, excellent antimicrobial activity, and biocompatibility. The ratio of 16:4 demonstrated the best capacity for swelling. These results establish Gelatin-PEG hydrogels as potentially effective drug delivery systems for the treatment of bacterial vaginosis and other medical conditions.
Cite this article:
Sonam Ahuja, Patil Bhagyashri Nemichandra. Gelatin-PEG Based Metronidazole loaded Vaginal Delivery Systems: Preparation, Characterization, Antimicrobial Efficiency. Research Journal Pharmacy and Technology. 2025;18(12):5864-2. doi: 10.52711/0974-360X.2025.00847
Cite(Electronic):
Sonam Ahuja, Patil Bhagyashri Nemichandra. Gelatin-PEG Based Metronidazole loaded Vaginal Delivery Systems: Preparation, Characterization, Antimicrobial Efficiency. Research Journal Pharmacy and Technology. 2025;18(12):5864-2. doi: 10.52711/0974-360X.2025.00847 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-37
REFERENCES:
1. Saldívar-Guerra, E., and Vivaldo-Lima, E. Introduction to Polymers and Polymer Types. Handbook of Polymer Synthesis, Characterization, and Processing. 2013; 1–14. doi: 10.1002/9781118480793.ch1
2. Luo. Q, Hossen.A. Md, Zeng.Y, Dai.J, Li.S, Qin.W, Liu.Y: Gelatin-based composite films and their application in food packaging: A review. Journal of Food Engineering. 2022; 313. doi:10.1016/j.jfoodeng.2021.110762
3. Brady, J., Dürig, T., Lee, P. I., and Li, J.-X. Li3. Polymer Properties and Characterization. Elsevier Inc 2017; doi:10.1016/ B978-0-12-802447-8.00007-8
4. Doppalapudi, S., Jain, A., Khan, W., and Domb, A. J. Biodegradable polymers-an overview. Polymers for Advanced Technologies. 2014; 25(5): 427-435. doi: 10.1002/pat.3305
5. Poppe, J. Gelatin. Thickening and Gelling Agents for Food 1992; 98-123. doi: 10.1007/978-1-4615-3552-2_5
6. Su, K., and Wang, C. Recent advances in the use of gelatin in biomedical research. Biotechnology Letters 2015; 37(11). doi:10.1007/s10529-015-1907-0
7. Khade, S. M., Behera, B., Sagiri, S. S., Singh, V. K., Thirugnanam, A., Pal, K., Bhattacharya, M. K. Gelatin–PEG based metronidazole loaded vaginal delivery system: preparation, characterization and in vitro antimicrobial efficiency. Iranian Polymer Journal. 2014; 23(3): 171–184. doi:10.1007/s13726-013-0213-8
8. Peppas, N. A., Keys, K. B., Torres-Lugo, M., and Lowman, A. M. (1999). Poly (ethylene glycol)-containing hydrogels in drug delivery. Journal of Controlled Release. 1999; 62(1-2): 81–87. doi:10.1016/s0168-3659(99)00027-9
9. Gondkar, A. S., Deshmukh, V. K., and Chaudhari, S. R. Synthesis, characterization and in-vitro anti-inflammatory activity of some substituted 1,2,3,4 tetrahydro pyrimidine derivatives. Drug Invention Today. 2013; 5(3): 175–181. doi: 10.1016/j.dit.2013.04.004
10. Atole, D. M., and Rajput, H. H. Ultraviolet spectroscopy and its pharmaceutical applications- A brief review. Asian Journal of Pharmaceutical and Clinical Research. 2017; 11(2): 59. doi:10.22159/ajpcr. 2018.v11i2.213
11. Mohamed, M. A., Jaafar, J., Ismail, A. F., Othman, M. H. D., and Rahman, M. A. Fourier Transform Infrared (FTIR) Spectroscopy. Membrane Characterization. 2017; 3–29. doi:10.1016/b978-0-444-63776-5.00001-2
12. Baidurah.S: Methods of Analyses for Biodegradable Polymers: A Review. Polymers. 2022; 14(22): 4928. doi:10.3390/ polym14224928
13. S Vijaya ram, H Razafindralambo, YZ Sun, S Vasanth raj, H Ghafarifarsani, SH Hoseinifar. Applications of Green Synthesized Metal Nanoparticles — a Review. Biological Trace Element Research. 2024; 202: 360–386. doi:10.1007/s12011-023-03645-9
14. Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Muthupandian S. Medicinal plants mediated the green synthesis of silver nano-particles and their biomedical applications. IET Nanobiotechnology. 2022; 16(4): 115–144. doi:10.1049/nbt2.12078
15. Joseph D. Menczel, R. Bruce Prime. Thermal analysis of polymers Fundamentals and Applications. John Wiley & Sons, Inc 2009; doi:10.1002/9780470423837
16. E Farid, EA Kamoun, TH Taha, A El-Dissouky, TE Khalil. PVA/CMC/Attapulgite Clay Composite Hydrogel Membranes for Biomedical Applications: Factors Affecting Hydrogel Membranes Crosslinking and Bio evaluation Tests. Journal of Polymers and the Environment. 2022; 30: 4675–4689. doi:10.1007/s10924-022-02538-7.
17. Hussein Y, El-Fakharany EM, Kamoun EA, Loutfy SA, Amin R, Taha TH, Salim SA, Amer M. Electro spun PVA/hyalu ronic acid/L-arginine nanofibers for wound healing applications: nanofibers optimization and in vitro bioevaluation. Int J Biol Mac Romol. 2020; 164: 667–676. doi:10.1016/j.ijbiomac.2020.07.126