Author(s): Shabib Khan, Lolly Jain

Email(s): shabib@somaiya.edu

DOI: 10.52711/0974-360X.2025.00814   

Address: Shabib Khan*, Lolly Jain
Department of Microbiology, K.J. Somaiya College of Science and Commerce, Vidyavihar (East), Mumbai-400077 (Autonomous- Affiliated to the University of Mumbai), Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 12,     Year - 2025


ABSTRACT:
In today’s global scenario, chronic infections are common and often difficult to deal with. There has been a consistent surge in the number of chronic infections over the past decades. A variety of factors govern the onset and progression of infections. Biofilm is a conglomerate of different types of microbial cells. Biofilm formation has been observed to be one of the common aspects in a wide number of infections related to respiratory and gastrointestinal tracts. Biofilm acts as a protective shield and offers a selective advantage to the pathogens to escape the host defense mechanism and the inhibitory impact of the antibiotics. There is a need to investigate methods to inhibit biofilm formation that could eventually aid in the treatment of an infection. Several methods to inhibit biofilm formation emphasize surface modification so that the organism is not able to adhere to the surface. Other methods consist of gene regulation and controlling the quorum sensing mechanisms governing biofilm formation. In this research, a biosurfactant, Rhamnolipid was obtained from a moderate halophile, Pseudomonas aeruginosa SH-6, and investigated for anti-biofilm potential. The emphasis was on clinically significant isolates known to synthesize biofilms. Appropriate controls were used, and a microtiter-well-based biofilm inhibition assay was conducted, using 0.1% Crystal violet for staining. It was found that Rhamnolipid (100mg/mL) was potent in inhibiting the biofilm of Pseudomonas aeruginosa MCC 2080 (ATCC 27853) with 60.51% ±1.27% (P-value < .05) inhibition and biofilm of Staphylococcus aureus NCIM 5022 (ATCC 29213) with 32.24% ±1.35% (P-value < .05) inhibition.


Cite this article:
Shabib Khan, Lolly Jain. Inhibition of a Biofilm using Rhamnolipid obtained from a Moderate halophile Pseudomonas aeruginosa SH-6. Research Journal Pharmacy and Technology. 2025;18(12):5640-4. doi: 10.52711/0974-360X.2025.00814

Cite(Electronic):
Shabib Khan, Lolly Jain. Inhibition of a Biofilm using Rhamnolipid obtained from a Moderate halophile Pseudomonas aeruginosa SH-6. Research Journal Pharmacy and Technology. 2025;18(12):5640-4. doi: 10.52711/0974-360X.2025.00814   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-4


REFERENCES:
1.    Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms. 2023; 11(6). doi:10.3390/microorganisms11061614
2.    Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol. 2005; 57(5): 1210-1223. doi:10.1111/j.1365-2958.2005.04743.x
3.    Yin W, Xu S, Wang Y, et al. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol. 2021; 47(1): 57-78. doi:10.1080/1040841X.2020.1842325
4.    Zareen IN, Prakasam G. Oral Biofilms. Res J Pharm Technol. 2016; 9(10): 1812. doi:10.5958/0974-360X.2016.00368.1
5.    Deepigaa M. Antibacterial Resistance of Bacteria in Biofilms. Res J Pharm Technol. 2017; 10(11): 4019. doi:10.5958/0974-360X.2017.00728.4
6.    M. R. Screening of selected Medicinal plants for its potential to inhibit Biofilm Formation and Virulence factor production by Pseudomonas aeruginosa PAO1. Res J Pharm Technol. Published online November 30, 2023: 5218-5224. doi:10.52711/0974-360X.2023.00846
7.    Venkatesan N, Sikkander S. Microbial biofilms. In: Microbial Biofilms. Elsevier; 2023: 1-17. doi:10.1016/B978-0-323-95715-1.00003-0
8.    Corral P, Amoozegar MA, Ventosa A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar Drugs. 2019; 18(1). doi:10.3390/md18010033
9.    Clien SY, Lu W Bin, Wei YH, Chen WM, Chang JS. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog. 2007; 23(3): 661-666. doi:10.1021/bp0700152
10.    Murugan T, Murugan M, Wins JA. Rhamnolipid Biosurfactants produced by Pseudomonas sp. MK5 and its efficacy on Pharmaceutical Application. Res J Pharm Technol. 2017; 10(8): 2645. doi:10.5958/0974-360X.2017.00470.X
11.    Reddy GS, Srinivasulu K, Mahendran B, Reddy RS. Biochemical Characterization of Anti-Microbial Activity and Purification of Glycolipids Produced by Dodecanoic Acid-Undecyl Ester. Res J Pharm Technol. 2018; 11(9): 4066. doi:10.5958/0974-360X.2018.00748.5
12.    S R V, Parvathi V D, Sumitha R. Isolation, Characterisation and Evaluation of Plastic Degrading Properties of Soil Biofilms Collected from Chennai District. Asian Journal of Pharmaceutical Research. Published online November 22, 2023: 237-243. doi:10.52711/2231-5691.2023.00044
13.    Akshatha N, Niki T, Sripradha S, Veena S, Rao KVB. Isolation and Characterization of Biosurfactant from Bacillus amyloliquefaciens VITANS6 Isolated from Oil Contaminated Soil collected from an Automobile Workshop in Bangalore, India. Res J Pharm Technol. 2018; 11(1): 207. doi:10.5958/0974-360X.2018.00039.2
14.    Piasecki T, Guła G, Nitsch K, Waszczuk K, Drulis-Kawa Z, Gotszalk T. Evaluation of Pseudomonas aeruginosa Biofilm Formation using Quartz Tuning Forks as Impedance Sensors. Procedia Eng. 2012; 47: 631-634. doi:10.1016/j.proeng.2012.09.226
15.    Nair S, Desai S, Poonacha N, Vipra A, Sharma U. Antibiofilm Activity and Synergistic Inhibition of Staphylococcus aureus Biofilms by Bactericidal Protein P128 in Combination with Antibiotics. Antimicrob Agents Chemother. 2016; 60(12): 7280-7289. doi:10.1128/AAC.01118-16
16.    Thakur P, Saini NK, Thakur VK, Gupta VK, Saini R V., Saini AK. Rhamnolipid the Glycolipid Biosurfactant: Emerging trends and promising strategies in the field of biotechnology and biomedicine. Microb Cell Fact. 2021; 20(1): 1-15. doi:10.1186/s12934-020-01497-9
17.    Olszewska MA, Kocot AM, Stanowicka A, Łaniewska-Trokenheim Ł. Biofilm formation by Pseudomonas aeruginosa and disinfectant susceptibility of planktonic and biofilm cells. Czech Journal of Food Sciences. 2016; 34(3): 204-210. doi:10.17221/528/2015-CJFS
18.    Wahman S, Emara M, M. Shawky R. In-vitro assessment of staphylococci biofilms formed under biologically-relevant conditions and correlation to the biofilm genotype. Res J Pharm Technol. Published online May 31, 2023: 2273-2279. doi:10.52711/0974-360X.2023.00373
19.    Yamasaki R, Kawano A, Yoshioka Y, Ariyoshi W. Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. BMC Microbiol. 2020; 20(1): 358. doi:10.1186/s12866-020-02034-9
20.    Mary RNI, Banu N. Inhibition of biofilm formation in Serratia marcescens by Andrographolide from Andrographis paniculata. Res J Pharm Technol. 2017; 10(3): 789. doi:10.5958/0974-360X.2017.00148.2
21.    Kareem aysam H, Hasan AY. Inhibition of Biofilm formation of Imipenem-resistant Acinetobacter baumannii using Curcuma longa extracts, silver nanoparticles and Azithromycin. Res J Pharm Technol. 2019; 12(9): 4463. doi:10.5958/0974-360X.2019.00769.8
22.    Al-Nashe AAR, Shakir SL. Genotypic Characterization of Staphylococcus spp. isolated from the bodies of workers in Units of MRI, CAT, X-Ray, Restaurants and Testing Their ability to Biofilms Formation. Res J Pharm Technol. 2018; 11(10): 4245. doi:10.5958/0974-360X.2018.00778.3
23.    Saadati F, Shahryari S, Sani NM, et al. Effect of MA01 rhamnolipid on cell viability and expression of quorum-sensing (QS) genes involved in biofilm formation by methicillin-resistant Staphylococcus aureus. Sci Rep. 2022; 12(1): 14833. doi:10.1038/s41598-022-19103-w 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available