Author(s): Marina Fanus Aughli, Ahmad Ayoubi, Djamila Ben Hadda, Yaser Bitar

Email(s): panossianmarina23@gmail.com

DOI: 10.52711/0974-360X.2025.00858   

Address: Marina Fanus Aughli1*, Ahmad Ayoubi2, Djamila Ben Hadda3, Yaser Bitar1
1Department of Pharmaceutical Chemistry and Quality Control, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria.
2Department of Pharmaceutical Chemistry and Quality Control, Faculty of Pharmacy, Ebla Private University, Idlib, Syria.
*Corresponding Author

Published In:   Volume - 18,      Issue - 12,     Year - 2025


ABSTRACT:
The Enzyme Sterol 14-a demethylase is involved in ergosterol biochemical synthesis pathway, which is necessary for the formation of cell membranes in fungi. This research aims to design, develop, and synthesize new fluconazole derivatives that inhibit the enzyme Sterol 14-a demethylase and therefore target ergosterol synthesis. Molecular modeling studies of the studied compounds were undertaken using The Molegro program (MVD) and the compounds binding energies were calculated to evaluate their effectiveness. After calculating the binding energies, we noticed that the compound (a6) has the highest binding energy (?G = -208.84 kcal/mol) compared with the Fluconazole (The native ligand) (?G= -134.09 kcal\mol) and the reference compound (ox diazole fluconazole derivative) (?G = -192.49Kcal\mol), where this one was selected from previous studies as reference for comparing. One characterized compound was selected and synthesized with a good yield, by reacting fluconazole with chloroacetic acid in an alkaline aqueous medium. Then the compound b1 that we synthesized it was identified by Mass Spectra, Infrared absorption Spectroscopy, and Nuclear Resonance Spectroscopy among other analytical methods.


Cite this article:
Marina Fanus Aughli, Ahmad Ayoubi, Djamila Ben Hadda, Yaser Bitar. Design, Molecular Modeling and Synthesis of Fluconazole Derivatives Targeting Sterol 14-Alpha Demethylase. Research Journal Pharmacy and Technology. 2025;18(12):5935-1. doi: 10.52711/0974-360X.2025.00858

Cite(Electronic):
Marina Fanus Aughli, Ahmad Ayoubi, Djamila Ben Hadda, Yaser Bitar. Design, Molecular Modeling and Synthesis of Fluconazole Derivatives Targeting Sterol 14-Alpha Demethylase. Research Journal Pharmacy and Technology. 2025;18(12):5935-1. doi: 10.52711/0974-360X.2025.00858   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-48


REFERENCES:
1.    Rex JH, Rinaldi MG, Pfaller MA. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995; 39(1): 1-6. doi:10.1128/AAC.39.1.1
2.    Ashfaq MH, Yousaf M. Antifungal activity of Senna alata – A review. Asian J Pharm Res. 2022; 12 (4): 307-311. doi:10.52711/2231-5691.2022.00050.
3.    Sawant VV, Chaudhari BP, Redasani VK. Review on drugs acting on Candida infection and their treatment. Asian J Res Chem. 2024; 17(5): 301-306. doi:10.52711/0974-4150.2024.00052.
4.    Bennett JE. Antimicrobial agents: antifungal agents. In: Gilman AG, Rall TW, Nies AS, Taylor P, eds. Goodman and Gilman's the Pharmacological Basis of Therapeutics. 8th ed. Elmsford, NY: Pergamon Press, Inc.; 1990:1165-1181.
5.    Shirsat SP, Tambe KP, Dhakad GG, Patil PA. Review on Antifungal Agents. Res J Pharm Dosage Forms Tech. 2022; 14(1):29-32. doi:10.52711/0975-4377.2022.00005
6.    Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother. 1988; 32(1): 1-8. https://doi.org/10.1128/aac.32.1.1
7.    Horsburgh CR, Kirkpatrick CH. Long-term therapy of chronic mucocutaneous candidiasis with ketoconazole: experience with twenty-one patients. Am J Med. 1983; 74(1 Pt 2): 23-29. https:// doi.org/ 10.1016/0002-9343(83)90511-9
8.    Brammer KW, Farrow PR, Faulkner JK. Pharmacokinetics and tissue penetration of fluconazole in humans. Rev Infect Dis. 1990; 12(Suppl 3): S318-S326. https:// doi.org/10.1093/clinids/12.Supplement_3.S318
9.    Aljamali NM. Synthesis of antifungal chemical compounds from fluconazole with (pharma-chemical) studying. Res J Pharm Biol Chem Sci. 2017; 8(3): 564-573. 
10.    Pasko MT, Piscitelli SC, Van Slooten AD. Fluconazole: A new triazole antifungal agent. DICP. 1990; 24(9): 860-867. Hhtps://doi.org/10.1177/106002809002400914
11.    Hajare AA, Mali MN, Dange AS, Sarvagod SM, Patwardhan SV, Kurane ST. Formulation, In Vitro Release and Iontophoresis Study of Fluconazole Hydrogel. Res J Pharm Dosage Forms Tech. 2009; 1(3): 280-284. 
12.    Antony R, Fernandez A, Lekshmi S, Velayudhan S, Jose S, Vijayan M. Case report on Fluconazole Induced Stevens-Johnson Syndrome. Res J Pharm Tech. 2019; 12(8): 3735-3738. doi:10.5958/0974-360X.2019.00639.5
13.    Richardson K, Cooper K, Marriott MS, et al. Discovery of fluconazole, a novel antifungal agent. Rev Infect Dis. 1990; 12(Supplement 3): S267-S271. doi:10.1093/clinids/12.Supplement_3.s267
14.    Chandrika NT, Shrestha SK, Ngo HX, Garneau-Tsodikova S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg Med Chem. 2016; 24(16): 3680-3686. https:// doi.org/10.1016/j.bmc.2016.06.010
15.    Bohlooli F, Sepehri S, Razzaghi-Asl N. Response surface methodology in drug design: A case study on docking analysis of a potent antifungal fluconazole. Comput Biol Chem. 2017; 67:158-173. https:// doi.org/10.1016/j.compbiolchem.2017.01.005
16.    Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorg Chem. 2020; 104: 104240. https:// doi.org/10.1016/j.bioorg.2020.104240
17.    Chatterjee AN. Role of Antifungal Therapy in Treating Different Types of Fungal Infections and Its Future: A Systematic Review. Asian J Pharm Res. 2023; 13(2): 129-135. doi:10.52711/2231-5691.2023.00026
18.    Jodh R, Tawar M, Mude G, Khodaskar H, Kinekar K. Ketoconazole: A Promising Drug for Fungal Infections. Asian J Res Pharm Sci. 2023; 13(2): 101-106.
19.    Shah RR, Magdum CS, Wadkar KA, Naikwade NS. Fluconazole Topical Microemulsion: Preparation and Evaluation. Res J Pharm Tech. 2009; 2(2): 353-357.
20.    Chandrika NT, Shrestha SK, Ngo HX, Howard KC, Garneau-Tsodikova S. Novel fluconazole derivatives with promising antifungal activity. Bioorg Med Chem. 2018; 26(3): 573-580.https:// doi.org/10.1016/j.bmc.2017.12.018
21.    Assress HA, Selvarajan R, Nyoni H, et al. Antifungal azoles and azole resistance in the environment: current status and future perspectives—a review. Rev Environ Sci Biotechnol. 2021; 20(4): 1011-1041.https:// doi.org/10.1007/s11157-021-09594-w
22.    Dave RD, Vyasa BM, Daniel PS, Anand IS, Patel CN. A Review on Posaconazole: A Newer Antifungal. Res J Pharm Tech. 2010; 3(3): 694-699. 
23.    Rao S, Bhat V, Fathima F, Kumar S, Verma R. In-silico studies of novel triazole derivatives as inhibitors of 14α demethylase CYP51. Res J Pharm Tech. 2020; 13(12): 5806-5810. doi:10.5958/0974-360X.2020.01012.4
24.    Xu Y, Sheng F, Zhao J, et al. ERG11 mutations and expression of resistance genes in fluconazole-resistant Candida albicans isolates. Arch Microbiol. 2015; 197(8): 1087-1093. https:// doi.org/ 10.1007/s00203-015-1146-8
25.    Flowers SA, Colón B, Whaley SG, Schuler MA, Rogers PD. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 2015; 59(2): 1132-1140.https:// doi.org/10.1128/aac.03470-14
26.    Hargrove TY, Friggeri L, Wawrzak Z, et al. Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. J Biol Chem. 2017; 292(16): 6728-6743. https://doi.org/10.1074/jbc.M117.778308

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available