Author(s): Ramesh Kumar, Smrati Sharma, Oshin Verma, Sidhanshu Kumar, Kalpana Pai

Email(s): drramesh.kumar34@gmail.com

DOI: 10.52711/0974-360X.2025.00862   

Address: Ramesh Kumar1, Smrati Sharma1, Oshin Verma1, Sidhanshu Kumar1, Kalpana Pai2
1Department of Biochemistry, Bundelkhand University, Jhansi-284128.
2Department of Zoology, Savitribai Phule Pune University, Ganeshkhind Rd, Pune - 411 007.
*Corresponding Author

Published In:   Volume - 18,      Issue - 12,     Year - 2025


ABSTRACT:
The utilization of plant extracts is preferred for the preparation of metal nanoparticles (NPs) due to biologically active components. We have recently reported the antioxidant, anti-inflammatory, and antileishmanial activities of silver nanoparticles synthesised from Phyllanthus emblica leaves. The main aim of this work was to examine a sustainable method for producing silver nanoparticles by utilising Carica papaya (papaya) leaf extract as a reducer. The fabricated AgNPs were characterized by UV-visible spectroscopy, Fourier transform infrared (FTIR), dynamic light scattering (DLS), and scanning electron microscopy (SEM). UV-Vis spectra of AgNPs have absorption maxima at 460 nm. FTIR bands identify the functional groups of the suspension that ensure the resilience of AgNPs. DLS measured the size of the formed AgNPs i.e. 68.40 nm. The zeta potential analyzer (ZP) of AgNPs exhibits values of -28.7 mV. The SEM results indicated the spherical as well as cuboidal shape of synthesized NPs with a mean size of 15 nm. Furthermore, the synthesized AgNPs showed putative antimicrobial activity towards various Gram-positive (+) and Gram-negative (-) pathogens and also anti-leishmanial activity. The IC50 content of AgNPs on L. donovani after 24, 48, and 72 h was calculated to be 45.88, 36.86, and 24.81 µg/mL, respectively. Moreover, this study confirmed anti-leishmanial and antibacterial properties in the AgNPs to further investigate the biomedical applications. The findings of this research present novel opportunities for the utilisation of green synthesized NPs derived in several domains such as pharmaceuticals and nanomedicine.


Cite this article:
Ramesh Kumar, Smrati Sharma, Oshin Verma, Sidhanshu Kumar, Kalpana Pai. Antileishmanial and Antibacterial Potential of Biosynthesized Silver Nanoparticles using Carica papaya Leaves Extract. Research Journal Pharmacy and Technology. 2025;18(12):5964-0. doi: 10.52711/0974-360X.2025.00862

Cite(Electronic):
Ramesh Kumar, Smrati Sharma, Oshin Verma, Sidhanshu Kumar, Kalpana Pai. Antileishmanial and Antibacterial Potential of Biosynthesized Silver Nanoparticles using Carica papaya Leaves Extract. Research Journal Pharmacy and Technology. 2025;18(12):5964-0. doi: 10.52711/0974-360X.2025.00862   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-52


REFERENCES:
1.    Van den Wildenberg W: Roadmap report on nanoparticles. W and W Espana sl, Barcelona, Spain; 2005.
2.    Nouri A, Yaraki MT, Lajevardi A, Rezaei Z, Ghorbanpour M, Tanzifi M. Ultrasonic-assisted green synthesis of silver nanoparticles using Menthaaquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloids Interface Sci Commun. 2020; 35: 100252. https://doi.org/10.1016/j.colcom.2020.100252
3.    Gul AR, Shaheen F, Rafique R. Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy. Chem Eng J. 2021; 407: 127202. https://doi.org/10.1016/j.cej.2020.127202
4.    Atoussi Ouidad, Chetehouna Sara, Derouiche Samir. Biological properties and Acute Toxicity Study of Copper oxide nanoparticles prepared by aqueous leaves extract of Portulaca oleracea (L). Asian J. Pharm. Res. 2020; 10(2): 89-94. https://doi.org/10.5958/2231-5691.2020.00017.9  
5.    Saira Sehar, Amiza, I. H Khan. Role of ZnO Nanoparticles for improvement of Antibacterial Activity in Food Packaging. Asian Journal of Pharmaceutical Research. 2021; 11(2): 128-1. https://doi.org/10.52711/2231-5691.2021.00024  
6.    Mankodi HR. Studies on different type of sutures using aloe vera gel coating. Int J Text Fashion Technol. 2013; 4: 11–6
7.    Saira Sehar, Mohsin Sher Ali Khan, Amiza, Touqir Hussain, M. Zahid, Moazina Mobeen, Imran Raza, Minnatullah. Synthesis of Zinc Oxide Nano particles from Moringa Tree leaves by Green Method and also check its Antibacterial activity against Gram Positive and Gram Negative Bacteria. Asian Journal of Pharmacy and Technology. 2022; 12(3): 213-7. https://doi.org/10.52711/2231-5713.2022.00035 
8.    Reshma Chauhan, Charmi Patel, Jitendriya Panigrahi. Greener approach for copper nanoparticles synthesis from Catharanthus roseus and Azadirachta indica leaf extract and their antibacterial and antioxidant activities. Asian J. Res. Pharm. Sci. 2018; 8(2): 81-90. https://doi.org/10.5958/2231-5659.2018.00016.4   
9.    Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess. 2014; 1: 1–10. https://doi.org/10.1186/s40643-014-0003-y
10.    Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015; 20(5): 8856–74. https://doi.org/10.3390/molecules20058856
11.    Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016; 17(9): 1534. https://doi.org/10.3390/ijms17091534
12.    M.C. Purohit, Anuj Kandwal, Reena Purohit, A.R. Semwal, Shama Parveen, Arun K. Khajuria. Antimicrobial Activity of Synthesized Zinc Oxide Nanoparticles using Ajuga bracteosa Leaf Extract. Asian Journal of Pharmaceutical Analysis. 2021; 11(4): 275-0. https://doi.org/10.52711/2231-5675.2021.00047  
13.    Ahmad A, Wei Y, Syed F. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J Photochem Photobiol B: Biol. 2016; 161: 17–24. https://doi.org/10.1016/j.jphotobiol.2016.05.003
14.    Khatami M, Alijani HQ, Heli H, Sharifi I. Rectangular shaped zinc oxide nanoparticles: green synthesis by Stevia and its biomedical efficiency. Ceram Int. 2018; 44: 15596–602. https://doi.org/10.1016/j.ceramint.2018.05.224
15.    Basu M, Das PK. Role of Reactive Oxygen Species in Infection by the Intracellular Leishmania Parasites. In: Chakraborti, S., Chakraborti, T., Chattopadhyay, D., Shaha, C. (eds) Oxidative Stress in Microbial Diseases. Springer, Singapore. 2019 https://doi.org/10.1007/978-981-13-8763-0_16
16.    Tyler KM, Myler PJ, Fasel N. Leishmania – After the Genome. Parasit Vectors. 2008; 1: 11. https://doi.org/10.1186/1756-3305-1-11
17.    Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001; 6: 849–54. https://doi.org/10.1046/j.1365-3156.2001.00778.x
18.    Richard JV, Werbovetz KA. New antileishmanial candidates and lead compounds. Curr Opin Chem Biol. 2010; 14: 447–55. https://doi.org/10.1016/j.cbpa.2010.03.023
19.    Sharma S, Kumar SK, Pai K, Kumar R. Synthesis of silver nanoparticles using Phyllanthus emblica leaf extract: Characterization, antioxidant, anti-inflammatory and antileishmanial activity against L. donovani. Nanomed Res J. 2024; Mar 1; 9(1): 9-19. https://doi.org/10.22034/nmrj.2024.01.002
20.    Ahmad N, Fazal H, Ayaz M, Abbasi BH, Mohammad I, Fazal L. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac J Trop Biomed. 2011; 1(4): 330–3. https://doi.org/10.1016/S2221-1691(11)60055-5
21.    Dharmarathna SL, Wickramasinghe S, Waduge RN, Rajapakse RP, Kularatne SA. Does Carica papaya leaf-extract increase the platelet count? An experimental study in a murine model. Asian Pac J Trop Biomed. 2013; 3(9): 720–4. https://doi.org/10.1016/S2221-1691(13)60145-8
22.    Anamika, Geetika Chandra. A Brief Review Article on Carica papaya and its Medical Advantages. Research Journal of Pharmacognosy and Phytochemistry. 2024; 16(3): 180-4. https://doi.org/10.52711/0975-4385.2024.00034
23.    Prabhu N, Divya RT, Yamuna GK. Synthesis of silver phytonanoparticles and their antibacterial efficacy. Dig J Nanomater Biostructures. 2010; 5: 185–9
24.    Silva LP, Pereira TM, Bonatto CC. Frontiers and perspectives in the green synthesis of silver nanoparticles. In: Green synthesis, characterization and applications of nanoparticles,. Elsevier; 2019. https://doi.org/10.1016/B978-0-08-102579-6.00007-1
25.    Vidhu VK, Aromal SA, Philip D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectros. 2011; 83: 392–7. https://doi.org/10.1016/j.saa.2011.08.051
26.    Sharma U, Singh D, Kumar P. Antiparasitic activity of plumericin and isoplumericin isolated from Plumeria bicolor against Leishmania donovani. Indian J Med Res. 2011; 134: 709–16. https://doi.org/10.4103/0971-5916.91005
27.    Boken J, Khurana P, Thatai S. Plasmonic nanoparticles and their analytical applications: A review. Appl Spectrosc Rev. 2017; 52: 774–820. https://doi.org/10.1080/05704928.2017.1312427
28.    Rajkumar T, Sapi A, Das G, Debnath T, Ansari A, Patra JK. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol B: Biol. 2019; 193: 1–7. https://doi.org/10.1016/j.jphotobiol.2019.01.008
29.    Alwahibi MS, Soliman DA, Alonaizan A. Green biosynthesis of silver nanoparticle using Commiphora myrrh extract and evaluation of their antimicrobial activity and colon cancer cells viability. J King Saud Univ Sci. 2020; 32: 3372–9. https://doi.org/10.1016/j.jksus.2020.09.024
30.    Huang J, Li Q, Sun D. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomumcamphora leaf. Nanotechnology. 2007; 18: 105104. https://doi.org/10.1088/0957-4484/18/10/105104
31.    Aslany S, Tafvizi F, Naseh V. Characterization and evaluation of cytotoxic and apoptotic effects of green synthesis of silver nanoparticles using Artemisia Ciniformis on human gastric adenocarcinoma. Mater Today Commun. 2020; 24: 101011. https://doi.org/10.1016/j.mtcomm.2020.101011
32.    Moteriya P, Chanda S. Green synthesis of silver nanoparticles from Caesalpinia pulcherrima leaf extract and evaluation of their antimicrobial, cytotoxic and genotoxic potential. J Inorg Organomet Polym Mater. 2020; 30: 3920–32. https://doi.org/10.1007/s10904-020-01532-7
33.    Baláž M, Bedlovičová Z, Kováčová M, Salayová A, Balážová Ľ. Green and bio-mechanochemical approach to silver nanoparticles synthesis, characterization and antibacterial potential.  In: Prasad, R., Siddhardha, B., Dyavaiah, M. (eds) Nanostructures for Antimicrobial and Antibiofilm Applications. Nanotechnology in the Life Science. 2020; Springer: Cham pp. 145-83. https://doi.org/10.1007/978-3-030-40337-9_72020:
34.    Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 134: 310–5. https://doi.org/10.1016/j.saa.2014.06.046
35.    Ghabban H, Alnomasy SF, Almohammed H, Al Idriss OM, Rabea S, Eltahir Y. Antibacterial, cytotoxic, and cellular mechanisms of green synthesized silver nanoparticles against some cariogenic bacteria (Streptococcus mutans and Actinomyces viscosus. J Nanomater. 2022; 1–8. https://doi.org/10.1155/2022/9721736
36.    Mohamed N, Elmasry H. Aloe Vera gel extract and sunlight mediated synthesis of silver nanoparticles with highly effective antibacterial and anticancer activity. Journal of Nanoanalysis. 2020: 7(1): 73-82
37.    Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ. 2016; 4: e2589. https://doi.org/10.7717/peerj.2589
38.    Panda MK, Singh YD, Behera RK, Dhal NK. Biosynthesis of nanoparticles and their potential application in food and agricultural sector. Green Nanoparticles. Springer, Cham; 2020. https://doi.org/10.1007/978-3-030-39246-8_10
39.    G. Alagumuthu, R. Kirubha. Biogenic Synthesis of Silver Nanoparticles using Aegle marmelos fruit extract and their Antibacterial potential. Asian J. Research Chem. 2013; 6(9):  839-844.
40.    Ghosh S, Saha M, Bandyopadhyay PK, Jana M. Extraction, isolation and characterization of bioactive compounds from chloroform extract of Carica papaya seed and it’s in vivo antibacterial potentiality in Channa punctatus against Klebsiella PKBSG14. Microb Pathog. 2017; 111: 508–18. https://doi.org/10.1016/j.micpath.2017.08.033


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available