Author(s):
Pramudita Riwanti, Yanu Andhiarto, Burhan Maarif
Email(s):
pramudita.riwanti@hangtuah.ac.id
DOI:
10.52711/0974-360X.2025.00867
Address:
Pramudita Riwanti1*, Yanu Andhiarto1, Burhan Maarif2
1Department of Pharmacy, Faculty of Pharmacy, Hang Tuah University, Surabaya, Indonesia.
2Department of Pharmacy, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Malang Islamic State University, Malang, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 12,
Year - 2025
ABSTRACT:
Estrogen deficiency in postmenopausal women accelerates the aging process, leading to skin thinning, dryness, and wrinkle formation. Cosmetic product usage is increasingly common in Indonesia, yet their prolonged application may cause adverse effects like skin cancer. Alternative treatments include hormone replacement therapy (HRT), though it poses risks such as heart disease and breast cancer. Phytoestrogens offer an alternative solution to maintain body homeostasis with the fewest side effects. Using zebrafish (Danio rerio) as models, the study looks into how Sargassum polycystum extracts might help slow down the aging process. Zebrafish exhibit an aging process akin to humans, making them suitable for studying anti-aging mechanisms. The study measures Sirt-1 levels via enzyme-linked immunosorbent Acute toxicity tests revealed moderate toxicity with an LD50 value of 1.236 µg/ml. Higher doses of S. polycystum extract showed significant increases in Sirt-1 levels, indicating improved anti-aging activities. ELISA kits were used to see what effect different amounts of S. polycystum extract had on zebrafish embryos. Higher Sirt-1 expression is linked to better cell protection against inflammation and oxidative stress.
Cite this article:
Pramudita Riwanti, Yanu Andhiarto, Burhan Maarif. In vivo Anti-aging effects of Brown Algae Extract (Sargassum polycystum) on Zebrafish (Danio rerio). Research Journal Pharmacy and Technology. 2025;18(12):6006-0. doi: 10.52711/0974-360X.2025.00867
Cite(Electronic):
Pramudita Riwanti, Yanu Andhiarto, Burhan Maarif. In vivo Anti-aging effects of Brown Algae Extract (Sargassum polycystum) on Zebrafish (Danio rerio). Research Journal Pharmacy and Technology. 2025;18(12):6006-0. doi: 10.52711/0974-360X.2025.00867 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-57
REFERENCES:
1. Lee WL. Tsui KH. Seow KM. Cheng MH. Su WH. Chen CP. Wang PH. Hormone Therapy For Postmenopausal Women And Unanswered Issue. Elsevier: Gynecology and Minimally Invasive Therapy. 2013; 2. doi.org/10.1016/j.gmit.2012.12.003
2. Varney. Helens. Jans MK. Carolyn L. Gegor. Buku Ajar Asuhan Kebidanan. Jakarta: Penerbit Buku Kedokteran EGC. 2008
3. Baur JA. Pearson KJ. Price NL. Jamieson HA. Lerin C. Kalra A. Prabhu VV. Allard JS. Lopez-Lluch G. Lewis K. Resveratol Improves Health and Survival of Mice on a High Calorie Diat. Nature. 2006; 444: 337-342. doi.org/10.1038/nature05354
4. Manmohan S. Jangdey, Anshita Gupta, Abhishek K. Sah, Sanjay J. Daharwal. Role of antioxidants in developing novel delivery systems as longevity therapy. Research J. Science and Tech. 2014; 6(3): 119-127.
5. Rosenthal. Sara. Pedoman Untuk Wanita: Revolusi Terapi Hormon, Sebuah Pendekatan Alami. Yogyakarta: Penerbit B-first. 2009
6. Kasbella WP. Madiawati PN. Analisis Faktor-Faktor Yang Mempengaruhi Keputusan Pembelian Konsumen Terhadap Produk Kosmetik Jafra. e-Proceeding of Management. 2017; 4(1).
7. Hayatunnufus. Perawatan Kulit Wajah. Padang: UNP Press. 2009
8. Stevenson S. Thornton J. Effect of Estrogens on Skin Aging and The Potential Role of SERMs. Clinical Interventions in Aging. 2007; 2(3): 283–297. doi.org/10.2147/cia.s798
9. Constantine GD. Pickar JH. Estrogens in Postmenopausal Women: Recent Insights. Elsevier: Pharmacology. 2003; 3: 626-634. doi.org/10.1016/j.coph.2003.07.003
10. Cos P. Bruyne TD. Apers S. Berghe D. Pieters L. Vlietinck AJA. Review: Phytoestrogen Recent Developments. 2003. doi.org/10.1055/s-2003-41122
11. Ososki AL. Kennelly E. J. Phytoestrogens: a Review of the Present State of Research. Phytotherapy Research. 2003; 17: 845-869. doi.org/10.1002/ptr.1364
12. Villiers T J. Bone Health And Osteoporosis In Postmenopausal women. Elsevier: Best Practice and Research Clinical Obstetrics and Gynaecology. 2009; 23: 73-85. doi.org/10.1016/j.bpobgyn.2008.10.009
13. Kadi, A. Beberapa Catatan Kehadiran Marga Sargassum di Perairan Indonesia. Oseana. 2005; 30 (4): 19-29. doi.org/10.21107/jk.v14i2.10934
14. Cahyaningrum K. Husni A. Budhiyanti SA. Aktivitas Antioksidan Ekstrak Rumput Laut Cokelat (Sargassum polycystum). Agritech Journal UGM. 2016; 36 (2): 137-144. doi.org/10.22146/agritech.12857
15. Mugozin A. Husni A. Pengaruh Penambahan Ekstrak Florotanin dari Sargassum sp. Pada Susu Segar terhadap Aktivitas Antioksidan dan Tingkat Penerimaan Konsumen. Jurnal Pengolahan Hasil Perikanan Indonesia (JPHPI) IPB. 2019; 22 (3): 562-572. doi.org/10.17844/jphpi.v22i3.29127
16. Riwanti P. Prasetyanti IK. Ma'arif B. Metabolite Profiling of Compounds from Sargassum polycystum Using UPLC-QToF-MS/MS. Pharmacognosy Journal. 2023; 15 (3): 321-333. doi.org/10.5530/pj.2023.15.82
17. Yudi P. Noer A. Eko N. Acute Toxicity Level of Pulutan (Urena lobata) Leaf Extract on Zebrafish (Danio rerio) and its Analysis by In Silico Study. Research J. Pharm. and Tech. 2022; 15(6): 2477-2. doi: 10.52711/0974-360X.2022.00413
18. Sabarinath C, Nandhu T, Sudhakar P et al, Shanmuganath C. Teratogenic effect of Ethanolic extract of Solanum xanthocarpum berries in Zebrafish embryo. Research J. Pharm. and Tech. 2020; 13(11): 5313-5316
19. Kumar A. K., Ramachandra S. S., Narsu L. Pharmacognostic and phytochemical investigations of roots of Hibiscus micranthus Linn. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2010; 2.
20. Pereira TCB. Eduardo PR. Denis BR. Helena S. Renato DD. Andre AS. Carla DB. dan Maurı´cio RB. Zebrafish as a Model Organism to Evaluate Drugs Potentially Able to Modulate Sirtuin Expression. Zebrafish. 2011; 8(1). doi.org/10.1089/zeb.2010.0677
21. Thiagarajan V. Pavani M. Archanaa S. Seenivasan R. Chandrasekaran N. Suraishkumar G. K. Mukherjee A. Diminishing Bioavailability and Toxicity of P25 TiO2 NPs During Continuous Exposure To Marine Algae Chlorella sp. Chemosphere. 2019; 233: 363-372. V 10.1016/j.chemosphere.2019.05.270
22. Zhang B. Juan C. Alfred SLC. Ben CBKo. Depletion of Sirtuin 1 (SIRT1) Leads to Epigenetic Modifications of Telomerase (TERT) Gene in Hepatocellular Carcinoma Cell. PLOS ONE. 2014; 9(1). doi.org/10.1371/journal.pone.0084931
23. Rajashree S. Gopal. V. Phytoformulation studies on Traditional Anti-Wrinkle Preparation. Research J. Pharm. and Tech. 2022; 15(3): 1378-4. doi: 10.52711/0974-360X.2022.00230
24. Liu T. Li N. Yan YQ. Liu Y. Xiong K. Liu Y. and Liu, ZD. Recent Advances In The Anti‐Aging Effects Of Phytoestrogens On Collagen, Water Content, And Oxidative Stress. Phytotherapy Research. 34(3); 435-447. doi.org/10.1002/ptr.6538
25. Karolczak K. Watala C. Estradiol As The Trigger Of Sirtuin-1-Dependent Cell Signaling With A Potential Utility In Anti-Aging Therapies. International Journal Of Molecular Sciences. 2023; 24(18): 13753. doi.org/10.3390/ijms241813753
26. Ahsas G. Jeetendra KG. Debapriya G. Phytoestrogens are emerging medicine in Prevention and Management of Cognitive deficits in Postmenopausal Women. Research J. Pharm. and Tech. 2021; 14(1): 513-515. doi: 10.5958/0974-360X.2021.00093.7
27. Pai D. Adiga S. Suresh G. Adiga U. Kumari S. Chaitra D. Desy T. M. Serum SIRT1 Levels and Genetic Variants in Diabetic Nephropathy: Insights from a Cross-sectional study. Research J. Pharm. and Tech. 2024; 17(6): 2829-2834. doi: 10.52711/0974-360X.2024.00444
28. Radhika Sharma. Combat Ageing by Sirtuins and Sirtfoods: Genetic and Dietary way of reducing senescence. International Journal of Technology. 2023; 13(2): 75-78. doi: 10.52711/2231-3915.2023.00009
29. Ma X. Sun Z. Han X. Li S. Jiang, X. Chen S. Neuroprotective Effect of Resveratrol via Activation of Sirt1 Signaling in a Rat Model of Combined Diabetes and Alzheimer’s Disease. Front. Neurosci. 2019; 13(1400): 1400. doi.org/10.3389/fnins.2019.01400
30. Araki T. Sasaki Y. Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2014; 305(5686): 1010–1013. doi.org/10.1126/science.1098014
31. Yeung AWK. Tzvetkov NT. El-Tawil OS. Bungau SG. Abdel-Daim MM. Atanasov AG. Antioxidants: Scientific Literature Landscape Analysis. Oxid. Med. Cell Longev. 2019: 8278454. doi.org/10.1155/2019/8278454
32. Theodotou M. Fokianos K. Mouzouridou A. Konstantinou C. Aristotelous, A., Prodromou, D., et al. The Effect Of Resveratrol On Hypertension: A clinical trial. Exp. Ther. Med. 2017; 13(1): 295–301. doi.org/10.3892/etm.2016.3958
33. Muthukumaran P. Shanmuganathan P. Malathi C. In Vitro Antioxidant Evaluation of Mimosa pudica. Asian J. Pharm. Res. 2011; 1(2): 44-46.
34. Preeti T. Rakesh K. Patel. Estimation of Total Phenolics and Flavonoids and Antioxidant Potential of Ashwagandharishta Prepared by Traditional and Modern Methods. Asian J. Pharm. Ana. 2013; 3(4): 147-152.
35. Bartosz IS. Bartosz G. Effect of Antioxidants Supplementation on Aging and Anti-aging. BioMed Research International. 2014; 1-17. doi.org/10.1155/2014/404680
36. Li R. Jia Z. Trush MA. Defining ROS in Biology and Medicine. Reactive Oxygen Species (APEX). 2016; 1 (1): 9-21. doi.org/10.20455/ros.2016.803
37. Carneiro JL. Haddad A. Righi IB. Ferreira LM. A promising alternative for mature skin: the effects of phytoestrogens on human skin and its topical use. Rev. Bras. Cir. Plast. 2023; 38(2): e0685. doi: 10.5935/2177-1235.2023RBCP0685-PT