Author(s): Manojkumar V, Felshiya Sherlie A, Aashika R, Asmath Begum S, Lakshmiaiswarya R, Sabariakilesh G, Arun KP

Email(s): kparun@jssuni.edu.in

DOI: 10.52711/0974-360X.2025.00876   

Address: Manojkumar V1, Felshiya Sherlie A2, Aashika R3, Asmath Begum S4, Lakshmiaiswarya R5, Sabariakilesh G6, Arun KP*
1Department of Pharmacy Practice, JSS College of Pharmacy, Ooty, Tamil Nadu, India – 643001.
2Department of Pharmacy Practice, JSS College of Pharmacy, Ooty, Tamil Nadu, India – 643001.
3Department of Pharmacy Practice, JSS College of Pharmacy, Ooty, Tamil Nadu, India – 643001.
4Department of Pharmacy Practice, JSS College of Pharmacy, Ooty, Tamil Nadu, India – 643001.
5Department of Pharmacy Practice, JSS College of Pharmacy, Ooty, Tamil Nadu, India – 643001.
6Department of Pharmacy, Uppsala University, Uppsala, Sweden, ORCID ID: 0009-0005-5439-170X
*Corresponding Author

Published In:   Volume - 18,      Issue - 12,     Year - 2025


ABSTRACT:
Objective: The study is aimed to evaluate the impact of Dihydropyrimidine dehydrogenase (DPD) deficiency on the PK of 5-fluorouracil (5-FU) by using pharmacometric simulations to propose an optimal 5-FU dosage regimen. Methods: The pharmacokinetic model 5-FU following one-compartment open model- intravenous infusion administration was constructed using clearance (Cl) and volume of distribution (Vd) values obtained from the literature. A total of 1000 virtual patients, in each group such as normal DPD activity and DPD deficient activity populations groups were simulated for time vs plasma concentration data and using the time vs plasma concentration data, area under the curve (AUC) were calculated and the AUC (0-8) were compared with the established therapeutic range and subsequent dose adjustments were made. Results: Dose of 400 mg/m 2, followed by 2400 mg/m 2 was given prior to dose adjustment, DPD-deficient population exhibited a significantly higher AUC (0-8) compared to the normal DPD activity population, necessitating a dose reduction of 37.25% to achieve target AUC (0-8) of 20-30 mg.h/l. Following dose adjustment, both populations achieved AUC values within the therapeutic range, with the adjusted dose of 400 mg/m 2, followed by 1500 mg/m 2 (2410mg) for DPD-deficient patients. Conclusion: DPD-deficient patients had significantly higher AUC (0-8) than those with normal DPD activity and different dosing–37.25 % reduction. Following dose individuation, both populations reached targeted levels of therapeutic AUC and encouraged individualized dosing for those patients who are DPD-deficient.


Cite this article:
Manojkumar V, Felshiya Sherlie A, Aashika R, Asmath Begum S, Lakshmiaiswarya R, Sabariakilesh G, Arun KP. Bridging the Gap: Precision Modelling Reveals Optimal 5-FU Dose Reduction for Dihydropyrimidine Dehydrogenase (DPD)-deficient patients. Research Journal Pharmacy and Technology. 2025;18(12):6059-4. doi: 10.52711/0974-360X.2025.00876

Cite(Electronic):
Manojkumar V, Felshiya Sherlie A, Aashika R, Asmath Begum S, Lakshmiaiswarya R, Sabariakilesh G, Arun KP. Bridging the Gap: Precision Modelling Reveals Optimal 5-FU Dose Reduction for Dihydropyrimidine Dehydrogenase (DPD)-deficient patients. Research Journal Pharmacy and Technology. 2025;18(12):6059-4. doi: 10.52711/0974-360X.2025.00876   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-66


REFERENCES:
1.    Longley DB, Harkin DP, Johnston PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003; 3(5): 330-8.
2.    Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, et al. Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature. 1957; 179(4561): 663-6.
3.    Wohlhueter RM, McIvor RS, Plagemann PG. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J Cell Physiol. 1980; 104(3): 309-19.
4.    Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989; 16(4): 215-37.
5.    Gamelin E, Boisdron-Celle M. Dose adjustment of fluorouracil based on pharmacokinetics. J Clin Oncol. 2000; 18(23): 3952-4.
6.    Etienne MC, Lagrange JL, Dassonville O, Fleming R, Thyss A, Renée N, et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol. 1994; 12(11): 2248-53.
7.    Amstutz U, Froehlich TK, Largiadèr CR. Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics. 2011; 12(9): 1321-36.
8.    Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res. 1987; 47(8): 2203-6.
9.    Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015; 16(16): 1639-50.
10.    Lee AM, Shi Q, Pavey E, Alberts SR, Sargent DJ, Sinicrope FA, et al. DPYD variants as predictors of 5-fluorouracil toxicity in adjuvant colon cancer treatment (NCCTG N0147). J Natl Cancer Inst. 2014; 106(12): dju298.
11.    Lunenburg CATC, Henricks LM, Guchelaar HJ, Swen JJ, Deenen MJ, Schellens JHM, et al. Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: Ready for prime time. Eur J Cancer. 2016; 54: 40-8.
12.    Froehlich TK, Amstutz U, Aebi S, Joerger M, Largiadèr CR. Clinical importance of risk variants in the dihydropyrimidine dehydrogenase gene for the prediction of early-onset fluoropyrimidine toxicity. Int J Cancer. 2015; 136(3): 730-9.
13.    Caudle KE, Thorn CF, Klein TE, Swen JJ, McLeod HL, Diasio RB, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin Pharmacol Ther. 2013; 94(6): 640-5.
14.    Henricks LM, Opdam FL, Beijnen JH, Cats A, Schellens JHM. DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: call for a drug label update. Ann Oncol. 2017; 28(12): 2915-22.
15.    Offer SM, Diasio RB. Is it finally time for a personalized medicine approach for fluorouracil-based therapies? J Clin Oncol. 2016; 34(3): 205-7.
16.    Schwaederle M, Zhao M, Lee JJ, Eggermont AM, Schilsky RL, Mendelsohn J, et al. Impact of Precision Medicine in Diverse Cancers: A Meta-Analysis of Phase II Clinical Trials. J Clin Oncol. 2015; 33(32): 3817-25.
17.    Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012; 1(9): e6.
18.    Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N, et al. Why has model-informed precision dosing not yet become common clinical reality? Lessons from the past and a roadmap for the future. Clin Pharmacol Ther. 2017; 101(5): 646-56.
19.    Subhashis Debnath, T. H. Harish Kumar. An Overview on Pharmacokinetics and Pharmacokinetic Modeling. Asian J. Res. Pharm. Sci. 2020; 10(2): 124-130.
20.    Soto E, Staab A, Doege C, Freiwald M, Munzert G, Michelet R. Prediction of clinical response to methotrexate in children with juvenile idiopathic arthritis. J Clin Pharmacol. 2011; 51(9): 1341-9.
21.    Joerger M. Covariate pharmacokinetic model building in oncology and its potential clinical relevance. AAPS J. 2012; 14(1): 119-32.
22.    Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010; 49(8): 493-507.
23.    Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, et al. Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol. 2008; 26(13): 2099-105.
24.    Saif MW, Choma A, Salamone SJ, Chu E. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst. 2009; 101(22): 1543-52.
25.    Capitain O, Asevoaia A, Boisdron-Celle M, Poirier AL, Morel A, Gamelin E. Individual fluorouracil dose adjustment in FOLFOX based on pharmacokinetic follow-up compared with conventional body-area-surface dosing: a phase II, proof-of-concept study. Clin Colorectal Cancer. 2012; 11(4): 263-7.
26.    Kaldate RR, Haregewoin A, Grier CE, Hamilton SA, McLeod HL. Modeling the 5-fluorouracil area under the curve versus dose relationship to develop a pharmacokinetic dosing algorithm for colorectal cancer patients receiving FOLFOX6. Oncologist. 2012; 17(3): 296-302.
27.    Pumas.ai. Pumas.ai: Pharmaceutical Modeling and Simulation Software. [Internet]. New York: Pumas-AI, Inc
28.    Jacob, J., Mathew, S. K., Chacko, R. T., Aruldhas, B. W., Singh, A., Prabha, R., and Mathew, B. S. (2021). Systemic exposure to 5-fluorouracil and its metabolite, 5,6-dihydrofluorouracil, and development of a limited sampling strategy for therapeutic drug management of 5-fluorouracil in patients with gastrointestinal malignancy. British Journal of Clinical Pharmacology, 87(3), 937–945. https://doi.org/10.1111/bcp.14444
29.    Rahul Ashok Sachdeo, Manoj S. Charde, Ritu D. Chakole. Colorectal Cancer: An Overview. Asian J. Res. Pharm. Sci. 2020; 10(3): 211-223.
30.    P. V. Kamala Kumari, Y. Srinivasa Rao. Personalized Medicine- A Review. Research J. Pharm. and Tech 2019; 12(8):3989-3992.
31.    Navakanth Raju Ramayanam, Rajesh Nanda Amarnath, Thangavel Mahalingam Vijayakumar. Pharmacogenetic Biomarkers and Personalized Medicine: Upcoming Concept in Pharmacotherapy. Research Journal of Pharmacy and Technology. 2022; 15(9): 4289-2.
32.    Shanmuga Sundaram Rajagopal, Anila A Varghese, Krishnaveni Kandasamy, Bhavatharini Sukumaran. Pharmacogenetics and Genetic Polymorphism of CYP Enzymes in Indian Population: A Clinical Review. Research J. Pharm. and Tech 2018; 11(12): 5681-5686.
33.    Swapnaa B, Santhosh Kumar V. Personalized Medicine - A Novel approach in Cancer Therapy. Research J. Pharm. and Tech. 2017; 10(1): 341-345.
34.    S. D. Mankar, Tanishka Pawar, Prerana Musale. Pharmacometrics: Application in Drug Development and Clinical Practice. Asian Journal of Pharmaceutical Analysis. 2023; 13(3): 210-6.
35.    Armila Sen, Komal Kumar, Shaheen Khan, Priyanka Pathak, Arjun Singh. Current Therapy in Cancer: Advances, Challenges, and Future Directions. Asian Journal of Nursing Education and Research. 2024; 14(1): 77-4.
36.    Jisha K, Venkateswaramurthy N, Sambathkumar R. The Influence of Pharmacogenetics in Cancer Chemotherapy. Res. J. Pharmacology and Pharmacodynamics. 2020; 12(1): 29-33.
37.    Melica Khatri, Sonam Dhar, Paul Ven, Arjun Singh. Understanding the Pharmacological Mechanisms of Anticancer Resistance: A Multifaceted Challenge in Cancer Treatment. Asian Journal of Pharmaceutical Research. 2024; 14(2): 183-7.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available