Author(s): Havizur Rahman, Hetty Lendora Maha

Email(s): havizurrahman27@unja.ac.id

DOI: 10.52711/0974-360X.2025.00883   

Address: Havizur Rahman1,3*, Hetty Lendora Maha2
1Department of Pharmacy, Faculty of Medicine and Health Sciences, University of Jambi, 36361 Jambi, Indonesia.
2Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia.
3Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, 40132 Bandung, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 12,     Year - 2025


ABSTRACT:
Parkinson's Disease (PD) is one of the most common neurodegenerative disorders, characterized by the death of dopaminergic cells in the substantia nigra part of the brain. Although there are various treatment options, such as levodopa and dopamine agonists, the long-term effectiveness of these therapies is often limited and can cause serious side effects. In this context, the importance of nanocarrier pharmacokinetics in treating PD is becoming increasingly apparent. Nanocarriers, which are drug delivery systems designed to improve the bioavailability and distribution of drugs, offer a potential solution to overcome the challenges in PD treatment. This paper highlights how nanocarriers' physical and chemical characteristics, such as size, shape, and surface modifications, can affect drug pharmacokinetics and therapeutic efficacy. With the ability to cross the blood-brain barrier, nanocarriers can enhance drug accumulation in the target area, reduce systemic side effects, and improve drug stability and solubility. However, challenges related to the toxicity and biocompatibility of nanocarriers still need to be overcome for clinical acceptance. Through collaboration between scientists, clinicians, and the pharmaceutical industry, further research is needed to develop optimal nanocarrier formulations and accelerate the transition from laboratory research to clinical applications. Thus, this paper aims to provide an in-depth insight into the role of nanocarriers in targeted drug delivery for Parkinson's Disease and future clinical implications.


Cite this article:
Havizur Rahman, Hetty Lendora Maha. Harnessing Nanocarriers for Targeted Drug Delivery in Parkinson's Disease: A Pharmacokinetic Perspective. Research Journal Pharmacy and Technology. 2025;18(12):6110-8. doi: 10.52711/0974-360X.2025.00883

Cite(Electronic):
Havizur Rahman, Hetty Lendora Maha. Harnessing Nanocarriers for Targeted Drug Delivery in Parkinson's Disease: A Pharmacokinetic Perspective. Research Journal Pharmacy and Technology. 2025;18(12):6110-8. doi: 10.52711/0974-360X.2025.00883   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-73


REFERENCES:
1.    Tarakad A, Jankovic J. Diagnosis and Management of Parkinson’s Disease. Semin Neurol. 2017; 37(2): 118–126. doi: 10.1055/s-0037-1601888.
2.    Kumar SB. Role of caffeine in dementia, Alzheimer’s, Parkinsonism, Bipolar mood disorder. Res J Pharm Technol. 2015; 8(11): 1582–1587. doi: 10.5958/0974-360X.2015.00282.6.
3.    Nishijima H, Ueno T, Ueno S, et al. Duloxetine Increases the Effects of Levodopa in a Rat Model of Parkinson’s Disease. Neurol Clin Neurosci. 2016; 4(4): 129–133. doi: 10.1111/ncn3.12051.
4.    Salat DH, Tolosa E. Levodopa in the Treatment of Parkinson’s Disease: Current Status and New Developments. J Park S Dis. 2013; 3(3): 255–269. doi: 10.3233/jpd-130186.
5.    Ivanova SA, Loonen AJM. Levodopa-Induced Dyskinesia Is Related to Indirect Pathway Medium Spiny Neuron Excitotoxicity: A Hypothesis Based on an Unexpected Finding. Park S Dis. 2016; 2016: 1–5. doi: 10.1155/2016/6461907.
6.    Cattaneo C, Sardina M, Bonizzoni E. Safinamide as Add-on Therapy to Levodopa in Mid- To Late-Stage Parkinson’s Disease Fluctuating Patients: Post Hoc Analysesof Studies 016 and SETTLE. J Park S Dis. 2016; 6(1): 165–173. doi: 10.3233/jpd-150700.
7.    Hinson VK. Parkinson’s Disease and Motor Fluctuations. Curr Treat Options Neurol. 2010; 12(3): 186–199. doi: 10.1007/s11940-010-0067-8.
8.    Stocchi F. Continuous Dopaminergic Stimulation and Novel Formulations of Dopamine Agonists. J Neurol. 2011; 258(S2): 316–322. doi: 10.1007/s00415-011-6024-y.
9.    Venkateswara Rao S, Sathesh Kumar S. Nanocarrier based anticancer drug delivery system: Current trends and prospects. Res J Pharm Technol. 2017; 10(1): 330–336. doi: 10.5958/0974-360X.2017.00067.1.
10.    Brusa L, Ceravolo R, Kiferle L, et al. Metabolic Changes Induced by Theta Burst Stimulation of the Cerebellum in Dyskinetic Parkinson’s Disease Patients. Parkinsonism Relat Disord. 2012; 18(1): 59–62. doi: 10.1016/j.parkreldis.2011.08.019.
11.    McCormack PL. Rasagiline: A Review of Its Use in the Treatment of Idiopathic Parkinson’s Disease. CNS Drugs. 2014; 28(11): 1083–1097. doi: 10.1007/s40263-014-0206-y.
12.    Nishijima H, Tomiyama M. What Mechanisms Are Responsible for the Reuptake of Levodopa-Derived Dopamine in Parkinsonian Striatum? Front Neurosci. 2016; 10. doi: 10.3389/fnins.2016.00575.
13.    Zhong M, Gu R, Zhu S, et al. Prevalence and Risk Factors for Minor Hallucinations in Patients With Parkinson’s Disease. Behav Neurol. 2021; 2021: 1–10. doi: 10.1155/2021/3469706.
14.    Müller T. Safinamide: An Add-on Treatment for Managing Parkinson’s Disease. Clin Pharmacol Adv Appl. 2018; Volume 10: 31–41. doi: 10.2147/cpaa.s137740.
15.    Cerasa A, Pugliese P, Messina D, et al. Prefrontal Alterations in Parkinson’s Disease With Levodopa‐induced Dyskinesia During fMRI Motor Task. Mov Disord. 2011; 27(3): 364–371. doi: 10.1002/mds.24017.
16.    Almanbekova A. Diagnosis and Pharmacological Management of Parkinson’s Disease: A Review. Int J Heal Sci Res. 2022; 12(2): 110–114. doi: 10.52403/ijhsr.20220215.
17.    Thulasi Ram D, Debnath S, Niranjan Babu M, et al. A review on solid lipid nanoparticles. Res J Pharm Technol. 2012; 5(11): 1359–1368. doi: 10.22159/ijcpr.2023v15i5.3051.
18.    Khot P, Nangare K, Payghan V, et al. Drug Delivery Systems Based on Polymeric Micelles. Asian J Res Pharm Sci. 2022; 12(1): 37–41. doi: 10.52711/2231-5659.2022.00007.
19.    Mitkova Z, Kamusheva M, Kalpachka D, et al. Review of Medicine Utilization for Parkinson’s Disease Management: The Bulgarian Perspective. J Public health Res. 2021; 10(4). doi: 10.4081/jphr.2021.2396.
20.    Trifonova OP, Maslov DL, Balashova EE, et al. Parkinson’s Disease: Available Clinical and Promising Omics Tests for Diagnostics, Disease Risk Assessment, and Pharmacotherapy Personalization. Diagnostics. 2020; 10(5): 339. doi: 10.3390/diagnostics10050339.
21.    Bae HW, Lee TW, Choi BT, et al. Selection of Effective Herbal Medicines for Parkinson’s Disease Based on the Text Mining of the Classical Korean Medical Literature Donguibogam. J Korean Med. 2021; 42(4): 120–132. doi: 10.13048/jkm.21041.
22.    Ross OA. A Prognostic View on the Application of Individualized Genomics in Parkinson’s Disease. Curr Genet Med Rep. 2013; 1(1): 52–57. doi: 10.1007/s40142-012-0003-1.
23.    Shroff G. Withania Somnifera shows Ability to Counter Parkinson’s Disease: An Update. Soj Neurol. 2015; 2(2): 1–4. doi: 10.15226/2374-6858/2/2/00120.
24.    Taravari A, Medziti F, Grunevska B, et al. Correlation of Age and Severity of Clinical Manifestation Assessed by UPDRS in Patients With Idiopathic Parkinson’s Disease. Med Arch. 2014; 68(1): 44. doi: 10.5455/medarh.2014.68.44-46.
25.    Straccia G, Colucci F, Eleopra R, et al. Precision Medicine in Parkinson’s Disease: From Genetic Risk Signals to Personalized Therapy. Brain Sci. 2022; 12(10): 1308. doi: 10.3390/brainsci12101308.
26.    Yu T. Development of Pharmacological Mechanism of Chinese Medicine Gastrodia Elata in the Treatment of Parkinson’s Disease. Int J Clin Exp Med Res. 2023; 7(3): 388–391. doi: 10.26855/ijcemr.2023.07.017.
27.    Cherian A, Kajaria D, Vijayaraghavan A. Parkinson’s Disease – Genetic Cause. Curr Opin Neurol. 2023; 36(4): 292–301. doi: 10.1097/wco.0000000000001167.
28.    Nagajyothi M, Pramod K, Bijin EN, et al. Accelerated Stability Studies of Atorvastatin Loaded Nanoemulsion Gel. Asian J Pharm Technol. 2015; 5(3): 188. doi: 10.5958/2231-5713.2015.00027.6.
29.    Raj H. D, Prasad S. M, Ujwala N. P, et al. Nanosuspension a Promising Tool for Solubility Enhancement: A Review. Asian J Pharm Technol. 2021; 11(3): 252–258. doi: 10.52711/2231-5713.2021.00042.
30.    Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized Medicine in Psychiatry: Problems and Promises. BMC Med. 2013; 11(1). doi: 10.1186/1741-7015-11-132.
31.    Viegas FPD, Gontijo VS, Silva M d. F, et al. Curcumin, Resveratrol and Cannabidiol as Natural Key Prototypes In Drug Design for Neuroprotective Agents. Curr Neuropharmacol. 2022; 20(7): 1297–1328. doi: 10.2174/1570159x19666210712152532.
32.    Riggare S, Hägglund M. Precision Medicine in Parkinson’s Disease – Exploring Patient-Initiated Self-Tracking. J Park S Dis. 2018; 8(3): 441–446. doi: 10.3233/jpd-181314.
33.    Han S, Kim S, Kim H-T, et al. Prevalence and Incidence of Parkinson’s Disease and Drug-Induced Parkinsonism in Korea. BMC Public Health. 2019; 19(1). doi: 10.1186/s12889-019-7664-6.
34.    Ramanathan U, Tanuseputro P. Improving Access to Palliative Care for Persons With Parkinson Disease. Ann Palliat Med. 2020; 9(2): 149–151. doi: 10.21037/apm.2019.11.10.
35.    Islam EU, Momin A, Sharmin F, et al. Socio-Demographic Characteristics of Parkinson’s Disease Patients Attended at a Tertiary Care Hospital in Dhaka City. J Curr Adv Med Res. 2019; 6(2): 106–110. doi: 10.3329/jcamr.v6i2.42982.
36.    Liu C, Huang X, Qiu S, et al. Chinese Herbal Complex ‘Bu Shen Jie Du Fang’ (BSJDF) Modulated Autophagy in an MPP+-Induced Cell Model of Parkinson’s Disease. Evidence-Based Complement Altern Med. 2019; 2019: 1–10. doi: 10.1155/2019/8920813.
37.    Liu X, Dan P, Guo Q, et al. The Dominant Role of Polymer Erosion in Paclitaxel Release From Folate‐modified Poly(ether‐anhydride) Nanocarrier. J Appl Polym Sci. 2012; 129(2): 748–755. doi: 10.1002/app.38774.
38.    Yokoi K, Godin B, Oborn CJ, et al. Porous Silicon Nanocarriers for Dual Targeting Tumor Associated Endothelial Cells and Macrophages in Stroma of Orthotopic Human Pancreatic Cancers. Cancer Lett. 2013; 334(2): 319–327. doi: 10.1016/j.canlet.2012.09.001.
39.    Ritter VC, Bonsaksen T. ≪p>Improvement in Quality of Life Following a Multidisciplinary Rehabilitation Program for Patients With Parkinson’s Disease</P> J Multidiscip Healthc. 2019; Volume 12: 219–227. doi: 10.2147/jmdh.s202827.
40.    Shah M, Pathak K. Solid Lipid Nanoparticles of Simvastatin: Pharmacokinetic and Biodistribution Studies on Swiss albino mice. Res J Pharm Dos Form Technol. 2012; 4(6): 336–342.
41.    Kumar JS. In Silico Studies Comparing the Adjuvant Therapies Approved for Parkinson’s Disease. J Drug Deliv Ther. 2021; 11(3-S):104–110. doi: 10.22270/jddt.v11i3-s.4813.
42.    Polo-Morales A, Alcocer-Salas Á, Rodríguez-Violante M, et al. Association Between Somatization and Nonmotor Symptoms Severity in People With Parkinson Disease. J Geriatr Psychiatry Neurol. 2020;34(1):60–65. doi: 10.1177/0891988720901787.
43.    Price-Evans A. Introducing Volume 14 Of <i>Personalized Medicine</I>. Per Med. 2016; 14(1): 1–3. doi: 10.2217/pme-2016-0096.
44.    Yeni Y, Wu X, Arman B. Anti-Parkinson Drug From Chemical  Medicines and Herbal Medicines: A Review. Pharm Biomed Sci J. 2022; 3(1). doi: 10.15408/pbsj.v3i1.20304.
45.    Cutter G, Liu Y. Personalized Medicine. Neurol Clin Pract. 2012; 2(4): 343–351. doi: 10.1212/cpj.0b013e318278c328.
46.    Luo J, Wu H, Li J, et al. Joint Modeling Study Identifies Blood‐Based Transcripts Link to Cognitive Decline in Parkinson’s Disease. Mov Disord. 2022; 37(12): 2386–2395. doi: 10.1002/mds.29213.
47.    Roemmich RT, Field AM, Elrod JM, et al. Interlimb Coordination Is Impaired During Walking in Persons With Parkinson’s Disease. Clin Biomech. 2013; 28(1): 93–97. doi: 10.1016/j.clinbiomech.2012.09.005.
48.    Kumar A. Herbal Moieties and Its Effect on Parkinsonism: A New Prospective. Ymer Digit. 2022; 21(08): 474–493. doi: 10.37896/ymer21.08/41.
49.    Saikia A, Bhattacharya P, Paul S. Importance of Dopamine in Parkinson’s Disease. Adv Tissue Eng Regen Med Open Access. 2018;4(3). doi: 10.15406/atroa.2018.04.00077.
50.    Akbıyık MA, Bodur OC, Keskin M, et al. A Sensitive Amperometric Biosensor Based on Carbon Dot 3-Chloropropyl-Trimethoxysilane Modified Electrode for Detection of Neurotransmitter Dopamine. J Electrochem Soc. 2023; 170(3): 37517. doi: 10.1149/1945-7111/acc364.
51.    Li B, He X, Wang J, et al. Novel Applications of Metabolomics in Personalized Medicine: A Mini-Review. Molecules. 2017; 22(7): 1173. doi: 10.3390/molecules22071173.
52.    Ypinga JH, Halteren AD v., Henderson E, et al. Rationale and Design to Evaluate the PRIME Parkinson Care Model: A Prospective Observational Evaluation of Proactive, Integrated and Patient-Centred Parkinson Care in the Netherlands (PRIME-NL). BMC Neurol. 2021; 21(1). doi: 10.1186/s12883-021-02308-3.
53.    Paakinaho A, Karttunen N, Koponen M, et al. Incidence of Muscle Relaxant Use in Relation to Diagnosis of Parkinson’s Disease. Int J Clin Pharm. 2020; 42(2): 336–340. doi: 10.1007/s11096-020-01002-7.
54.    Kumar V, Kaur N, Wadhwa P. A Review Over the effect of Heavy Metal in Metabolism of Brassica juncea (L.) and Myristica fragrans. Asian J Pharm Res. 2021; 11(2): 97–103. doi: 10.52711/2231-5691.2021.00019.
55.    Kaur B. Classification on Degree of Harming in Parkinson Disease. Int J Adv Res Comput Sci. 2017; 8(8): 126–134. doi: 10.26483/ijarcs.v8i8.4668.
56.    Hwang T, Song M-Y, Ahn S, et al. Effects of Combined Treatment With Acupuncture and Chunggan Formula in a Mouse Model of Parkinson’s Disease. Evidence-Based Complement Altern Med. 2019; 2019: 1–14. doi: 10.1155/2019/3612587.
57.    Gastel BE v., Jacobs B, Popma J. Data Protection Using Polymorphic Pseudonymisation in a Large-Scale Parkinson’s Disease Study. J Park S Dis. 2021; 11(s1): S19–S25. doi: 10.3233/jpd-202431.
58.    Vg K, Ph P, Hs M, et al. Determination of Bioequivalence of Two Oral Formulations of Gatifloxacin Tablets in Healthy Male Volunteers Using Urinary Excretion Data . 2009; 1(2): 73–78.
59.    Pasinetti GM. Role of Personalized Medicine in the Identification and Characterization of Parkinson?s Disease in Asymptomatic Subjects. J Alzheimer’s Dis Park. 2012; 02(03). doi: 10.4172/2161-0460.1000e118.
60.    Bryant MS, Rintala DH, Hou JG, et al. Effects of Levodopa on Forward and Backward Gait Patterns in Persons With Parkinson’s Disease. NeuroRehabilitation. 2011; 29(3): 247–252. doi: 10.3233/nre-2011-0700.
61.    Titova N, Chaudhuri KR. Personalized Medicine in Parkinson’s Disease: Time to Be Precise. Mov Disord. 2017; 32(8): 1147–1154. doi: 10.1002/mds.27027.
62.    Marquez JS. Supplementary Motor Area Activity Differs in Parkinson’s Disease With and Without Freezing of Gait. Park S Dis. 2023; 2023: 1–7. doi: 10.1155/2023/5033835.
63.    Palau F. Personalized Medicine in Rare Diseases. Per Med. 2012; 9(2): 137–141. doi: 10.2217/pme.12.2.
64.    Mishima T, Fujioka S, Morishita T, et al. Personalized Medicine in Parkinson’s Disease: New Options for Advanced Treatments. J Pers Med. 2021; 11(7): 650. doi: 10.3390/jpm11070650.
65.    Suhesti TS, Fudholi A, Martien R, et al. Pharmaceutical nanoparticle technologies: An approach to improve drug solubility and dissolution rate of Piroxicam. Res J Pharm Technol. 2017; 10(4): 968. doi: 10.5958/0974-360x.2017.00176.7.
66.    Armstrong MJ, Rastgardani T, Gagliardi AR, et al. Barriers and Facilitators of Communication About Off Periods in Parkinson’s Disease: Qualitative Analysis of Patient, Carepartner, and Physician Interviews. PLoS One. 2019; 14(4): e0215384. doi: 10.1371/journal.pone.0215384.
67.    Jellinger KA, Attems J. Nigral Pathology in Older Persons Without Parkinson Disease. Ann Neurol. 2012; 72(2): 297. doi: 10.1002/ana.23640.
68.    Andin ARA, Ashar T, Lubis R. The Relationship Between Personal Hygiene and Household Insecticide Use With Parkinsonism on Farmers at Juhar Ginting Sadanioga. Britain Int Exact Sci J. 2020; 2(1): 102–107. doi: 10.33258/bioex.v2i1.114.
69.    Sullivan. Early-Adult Life Correlates of Personality in Parkinson’s Disease. J Neurol Res. 2014. doi: 10.14740/jnr280w.
70.    Malanda A, Abécassis P-Y, Barnéoud P, et al. Data on Synthesis, ADME and Pharmacological Properties and Early Safety Pharmacology Evaluation of a Series of Novel NURR1/NOT Agonist Potentially Useful for the Treatment of Parkinson’s Disease. Data Br. 2019; 27: 104057. doi: 10.1016/j.dib.2019.104057.
71.    Vuletić V. Sex Differences in the Therapy of Advanced Movement Disorders. Arch Psychiatry Res. 2023; 59(1): 107–114. doi: 10.20471/may.2023.59.01.14.
72.    Jun P, Zhao H, Kwon O, et al. Efficacy of Traditional Herbal Medicine Treatment Based on Pattern Identification for Idiopathic Parkinson’s Disease: A Protocol for Systematic Review and Meta-Analysis. Evidence-Based Complement Altern Med. 2022; 2022: 1–5. doi: 10.1155/2022/4777849.
73.    Hill CJ, Fleming JR, Mousavinejad M, et al. Self‐Assembling Proteins as High‐Performance Substrates for Embryonic Stem Cell Self‐Renewal. Adv Mater. 2019; 31(17). doi: 10.1002/adma.201807521.
74.    Stegemöller EL, Zaman A, Uzochukwu J. Repetitive Finger Movement and Circle Drawing in Persons With Parkinson’s Disease. PLoS One. 2019; 14(9): e0222862. doi: 10.1371/journal.pone.0222862.
75.    Leiknes I, Høye S. Family Caregivers’ Experiences of Provided Home Care to Persons With Parkinson’s Disease. Nord Sygeplejeforskning. 2012; 2(1): 29–44. doi: 10.18261/issn1892-2686-2012-01-04.
76.    Heuvel L v. d., Dorsey R, Prainsack B, et al. Quadruple Decision Making for Parkinson’s Disease Patients: Combining Expert Opinion, Patient Preferences, Scientific Evidence, and Big Data Approaches to Reach Precision Medicine. J Park S Dis. 2020; 10(1): 223–231. doi: 10.3233/jpd-191712.
77.    Polívka J, Krakorova K, Peterka M, et al. Current Status of Biomarker Research in Neurology. Epma J. 2016;7(1). doi: 10.1186/s13167-016-0063-5.
78.    Lauretani F, Ticinesi A, Meschi T, et al. The Key Points for Treatment of Parkinsonism in Older Persons. Geriatr Care. 2017;2(3). doi: 10.4081/gc.2016.6156.
79.    Mishra V, Chanda P, Tambuwala MM, et al. Personalized Medicine: An Overview. Int J Pharm Qual Assur. 2019;10(02). doi: 10.25258/ijpqa.10.2.13.
80.    Romero K, Ito K, Rogers J, et al. The Future Is Now: Model‐based Clinical Trial Design for Alzheimer’s Disease. Clin Pharmacol Ther. 2014;97(3):210–214. doi: 10.1002/cpt.16.
81.    Saunders‐Pullman R, Raymond D, Ortega RA, et al. International Genetic Testing and Counseling Practices for Parkinson’s Disease. Mov Disord. 2023;38(8):1527–1535. doi: 10.1002/mds.29442.
82.    Díaz ML. Regenerative Medicine: Could Parkinson’s Be the First Neurodegenerative Disease to Be Cured? Futur Sci Oa. 2019;5(9). doi: 10.2144/fsoa-2019-0035.
83.    Abendroth M, Greenblum CA. The Value of Peer-Led Support Groups Among Caregivers of Persons With Parkinson’s Disease. Holist Nurs Pract. 2014;28(1):48–54. doi: 10.1097/hnp.0000000000000004.
84.    Jonasson SB, Nilsson MH, Lexell J, et al. Experiences of Fear of Falling in Persons With Parkinson’s Disease – A Qualitative Study. BMC Geriatr. 2018;18(1). doi: 10.1186/s12877-018-0735-1.
85.    Sieurin J, Gustavsson P, Weibull CE, et al. Personality Traits and the Risk for Parkinson Disease: A Prospective Study. Eur J Epidemiol. 2015;31(2):169–175. doi: 10.1007/s10654-015-0062-1.
86.    Lilly ML, Hermanns M, Dallam DL, et al. Parkinson’s Disease: Addressing Health Care Practitioners’ Automatic Responses to Hypomimia. J Am Assoc Nurse Pract. 2020;33(9):676–680. doi: 10.1097/jxx.0000000000000471.
87.    J M, Samyuktha N, B YYS. Discourse Analysis in Tamil Speaking Individuals With Parkinson’s Disease. Int J Sci Healthc Res. 2021;6(4):11–16. doi: 10.52403/ijshr.20211003.
88.    Mursaleen L, Noble B, Chan SHY, et al. N-Acetylcysteine Nanocarriers Protect Against Oxidative Stress in a Cellular Model of Parkinson’s Disease. Antioxidants. 2020;9(7):600. doi: 10.3390/antiox9070600.
89.    Armstrong MJ, Okun MS. Time for a New Image of Parkinson Disease. Jama Neurol. 2020;77(11):1345. doi: 10.1001/jamaneurol.2020.2412.
90.    Guzman ACV de, Razzak MA, Cho J-H, et al. Curcumin-Loaded Human Serum Albumin Nanoparticles Prevent Parkinson’s Disease-Like Symptoms in C. Elegans. Nanomaterials. 2022;12(5):758. doi: 10.3390/nano12050758.
91.    Liao Y-L. Applying Neural Network in Classifying Parkinson’s Disease. J Comput Commun. 2020;08(10):19–23. doi: 10.4236/jcc.2020.810003.
92.    Naqvi S, Panghal A, Flora SJS. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front Neurosci. 2020;14. doi: 10.3389/fnins.2020.00494.
93.    Blacker D. Being a Patient With Early Stage Parkinson Disease: Reaction to the Diagnosis and Management. Intern Med J. 2021;51(1):121–124. doi: 10.1111/imj.15154.
94.    Liu T, Xie Q, Dong Z, et al. Nanoparticles-Based Delivery System and Its Potentials in Treating Central Nervous System Disorders. Nanotechnology. 2022;33(45):452001. doi: 10.1088/1361-6528/ac85f3.
95.    Zaidi Z, Nazir S, Nasir A, et al. Role of Diet in Old Age. Ann Geriatr Educ Med Sci. 2021; 8(2): 42–45. doi: 10.18231/j.agems.2021.011.
96.    Chaubey P, Momin M, Sawarkar S. Significance of Ligand-Anchored Polymers for Drug Targeting in the Treatment of Colonic Disorders. Front Pharmacol. 2020; 10. doi: 10.3389/fphar.2019.01628.
97.    Venkatraman S, Ramasamy K. Application of Precision Medicine in Medical Conditions. Int J Basic Clin Pharmacol. 2023; 12(4): 616–620. doi: 10.18203/2319-2003.ijbcp20231901.
98.    Weuve J, Press DZ, Grodstein F, et al. Cumulative Exposure to Lead and Cognition in Persons With Parkinson’s Disease. Mov Disord. 2012; 28(2): 176–182. doi: 10.1002/mds.25247.
99.    Zaman A, Stegemöller EL. Handwriting at Different Paces and Sizes With Visual Cues in Persons With Parkinson’s Disease. J Neurol Res. 2018; 8(3): 26–33. doi: 10.14740/jnr493w.
100.    Mahajani S, Raina A, Fokken C, et al. Homogenous Generation of Dopaminergic Neurons From Multiple hiPSC Lines by Transient Expression of Transcription Factors. Cell Death Dis. 2019; 10(12). doi: 10.1038/s41419-019-2133-9.
101.    Le D-H. ID:2048 Computational Methods for Personalized Medicine in Cancer Research. Biomed Res Ther. 2017; 4(S): 77. doi: 10.15419/bmrat.v4is.282.
102.    Pavan B, Dalpiaz A, Marani L, et al. Geraniol Pharmacokinetics, Bioavailability and Its Multiple Effects on the Liver Antioxidant and Xenobiotic-Metabolizing Enzymes. Front Pharmacol. 2018; 9. doi: 10.3389/fphar.2018.00018.
103.    Harnett MC, Yan T, Georgas E, et al. Progress, Opportunities, and Challenges of Magneto-Plasmonic Nanoparticles Under Remote Magnetic and Light Stimulation for Brain-Tissue and Cellular Regeneration. Nanomaterials. 2022; 12(13): 2242. doi: 10.3390/nano12132242.
104.    Mulvihill JJ, Cunnane EM, Ross AM, et al. Drug Delivery Across the Blood–Brain Barrier: Recent Advances in the Use of Nanocarriers. Nanomedicine. 2020; 15(2): 205–214. doi: 10.2217/nnm-2019-0367.
105.    Gabr MT, Yahiaoui S. Multitarget Therapeutics for Neurodegenerative Diseases. Biomed Res Int. 2020;2020:1–2. doi: 10.1155/2020/6532827.
106.    Mursaleen L, Somavarapu S, Zariwala MG. Deferoxamine and Curcumin Loaded Nanocarriers Protect Against Rotenone-Induced Neurotoxicity. J Park S Dis. 2020; 10(1): 99–111. doi: 10.3233/jpd-191754.
107.    Xu J, Li J, Lin S, et al. Nanocarrier‐Mediated Codelivery of Small Molecular Drugs and siRNA to Enhance Chondrogenic Differentiation and Suppress Hypertrophy of Human Mesenchymal Stem Cells. Adv Funct Mater. 2016; 26(15): 2463–2472. doi: 10.1002/adfm.201504070.
108.    Guo W-W, Zhang Z, Wei Q, et al. Intracellular Restructured Reduced Glutathione-Responsive Peptide Nanofibers for Synergetic Tumor Chemotherapy. Biomacromolecules. 2019; 21(2): 444–453. doi: 10.1021/acs.biomac.9b01202.
109.    Kumar A, Lale S V, Mahajan S, et al. ROP and ATRP Fabricated Dual Targeted Redox Sensitive Polymersomes Based on pPEGMA-PCL-ss-PCL-pPEGMA Triblock Copolymers for Breast Cancer Therapeutics. ACS Appl Mater Interfaces. 2015; 7(17): 9211–9227. doi: 10.1021/acsami.5b01731.
110.    Lyu Y, Yang C, Lyu X, et al. Active Delivery of CRISPR System Using Targetable or Controllable Nanocarriers. Small. 2021; 17(24). doi: 10.1002/smll.202005222.
111.    Georgilis E, Abdelghani M, Pille J, et al. Nanoparticles Based on Natural, Engineered or Synthetic Proteins and Polypeptides for Drug Delivery Applications. Int J Pharm. 2020; 586: 119537. doi: 10.1016/j.ijpharm.2020.119537.
112.    Caster JM, Patel AN, Zhang T, et al. Investigational Nanomedicines in 2016: A Review of Nanotherapeutics Currently Undergoing Clinical Trials. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology. 2016; 9(1). doi: 10.1002/wnan.1416.
113.    Dobrovolskaia MA, Shurin MR, Shvedova AA. Current Understanding of Interactions Between Nanoparticles and the Immune System. Toxicol Appl Pharmacol. 2016; 299: 78–89. doi: 10.1016/j.taap.2015.12.022.
114.    Alobeidat S, Athamneh T. Nanoliposomes as Drug Delivery Systems for Antifungal Therapy. Precis Nanomedicine. 2022; 5(4). doi: 10.33218/001c.56154.
115.    He R, Zhang G, Yang J, et al. Investigating Dual Drug Loaded PLGA Nanocarriers for Improved Efficacy in Endometritis Therapeutics. J Exp Nanosci. 2021; 16(1): 116–131. doi: 10.1080/17458080.2021.1917766.
116.    Yongvongsoontorn N, Chung JE, Gao SJ, et al. Carrier-Enhanced Anticancer Efficacy of Sunitinib-Loaded Green Tea-Based Micellar Nanocomplex Beyond Tumor-Targeted Delivery. ACS Nano. 2019; 13(7): 7591–7602. doi: 10.1021/acsnano.9b00467.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available