Author(s): Bhoj Raj, Manjusha Choudhary, Vikas Budhwar

Email(s): drvikasbudhwar@mdurohtak.ac.in

DOI: 10.52711/0974-360X.2025.00885   

Address: Bhoj Raj1, Manjusha Choudhary2, Vikas Budhwar1*
1Department of Pharmaceutical Science, MDU, Rohtak, Haryana, India.
2Institute of Pharmaceutical Sciences KU, Kurukshetra, Haryana, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 12,     Year - 2025


ABSTRACT:
The major supply of energy is the body, glucose, is necessary. Still, excessive blood sugar can cause other major problems, such as impairments to the kidneys, eyesight, and cardiovascular system. Hyperglycemia is the term used to describe the condition in which blood sugar levels are important. DM is a metabolic disease that induces hyperglycemia and has been linked to many deaths. Therefore, many treatments and preventive measures have been taken to fight DM. Several oral drugs, such as sulfonylureas, metformin, and rosiglitazone, are used to treat diabetes. Some medicines, though, are not suitable for certain populations or carry significant risks. Here, we discuss about the antidiabetic mechanism of the natural compound Quercetin. Also, we discovered that Quercetin possesses anti-inflammatory, anticancer, and anti-allergic properties. It has been noted that anti-allergic stress and the level of inflammation influence the onset of DM. Plant flavonol quercetin possesses biological properties that include anti-inflammatory, anti-cancer, antidiabetic, neuroprotective, and anti-allergic effects.The main objective of this review is to explore the antidiabetic potential of the Quercetin from previously published research on the anti-diabetic act of Quercetin. Overall, For the statistical analysis, 15 qualifying publications with suitable serum glucose data were used. The analysis for serum glucose level (mg/dL) showed a significant difference between the means at doses of 10, 25, and 50mg/kg. Thus, at dose of 10, 25, and 50mg/kg, Quercetin lowers serum glucose levels, according to the analysis's results.


Cite this article:
Bhoj Raj, Manjusha Choudhary, Vikas Budhwar. Unlocking the Antidiabetic Potential of Quercetin. Research Journal Pharmacy and Technology. 2025;18(12):6125-0. doi: 10.52711/0974-360X.2025.00885

Cite(Electronic):
Bhoj Raj, Manjusha Choudhary, Vikas Budhwar. Unlocking the Antidiabetic Potential of Quercetin. Research Journal Pharmacy and Technology. 2025;18(12):6125-0. doi: 10.52711/0974-360X.2025.00885   Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-12-75


7 REFERENCES:
1.    Nitin D Deore, Shruti Gupta, Birendra Shrivastav, C. D. Upasni, Kishori G Apte, Shaikh A. M. Evidence based Evaluation of Antidiabetic Potential of Yesaka on Streptozotocin Diabetic Rats. Research J. Pharm. and Tech. 2018; 11(11): 4965-4970.
2.    Porkodi Karthikeyan, M.V. Dass Prakash, Pavithra Devi Sendurapandi, Kalaiselvi Periandavan. Assessment of the antidiabetic potential of Gymnemic acid as α-amylase and α-Glucosidase inhibitor using invitro and insilico tools. Research Journal of Pharmacy and Technology. 2021; 14(9): 4755-9. 
3.    Tabatabaei-Malazy O, Ramezani A, Atlasi R, Larijani B, Abdollahi M. Scientometric study of academic publications on antioxidative herbal medicines in type 2 diabetes mellitus. Journal of diabetes and metabolic disorders. 2016; Dec; 15: 1-8. doi:10.1186/s40200-016-0273
4.    Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S. Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer cell. 2013; Sep 9; 24(3): 331-46.doi:10.1016/j.ccr.2013.08.001
5.    Van Meter AR, Youngstrom EA, Findling RL. Cyclothymic disorder: a critical review. Clinical Psychology Review. 2012; 1; 32(4): 229-43.doi:10.1016/j.cpr.2012.02.001
6.    Maqbool F, Mostafalou S, Bahadar H, Abdollahi M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sciences. 2016; Jan 15; 145: 265-73. doi:10.1016/j.lfs.2015.10.022
7.    Daisy Sharma, Manash Pratim Sarma, Chandana Choudhury Barua, Radali Duarah, Pameena Narzary. In-vivo and In- vitro Antidiabetic potential of Musa balbisiana colla and its different parts. Research Journal of Pharmacy and Technology. 2023; 16(12): 5667-0. 
8.    Supriya C. Patil, Suresh G. Killedar, Harinath N. More, Ashok A. Hajare, A. S. Manjappa. In Silico Exploration of Phytoconstituents and Identification of Hits Against α-Amylase for Antidiabetic Potential. Research Journal of Pharmacy and Technology. 2024; 17(1): 419-6. 
9.    Wadhwa K, Kadian V, Puri V, Bhardwaj BY, Sharma A, Pahwa R, Rao R, Gupta M, Singh I. New insights into quercetin nanoformulations for topical delivery. Phytomedicine Plus. 2022; May 1; 2(2): 100257. DOI:10.1016/j.phyplu.2022.100257
10.    Raj, B, Choudhary, M.,Budhwar, V. Antidiabetic activity of Psidium guajava leaf: An update rewie. Neuroquantology20(19), 2170-2177.DOI: 10.48047/nq.2022.20.19.NQ99182
11.    K. Keerthana, G. Jothi. Determination of In vitro antidiabetic potential of Aqueous and Ethanol extracts and isolated fraction of Zanthoxylum armatum DC stem bark. Research J. Pharm. and Tech. 2020; 13(8): 3681-3684. 
12.    Nigam V, Sodhi JS. Some medicinal plants with antioxidant activity: a review. Int J Pharm Biol Sci. 2014; 4: 173-8. doi:10.4103/0973-7847.194044.
13.    Anupam K. Sachan, Ch. V. Rao, Nikhil K. Sachan. Determination of Antidiabetic Potential in Crude Extract of Caesalpinia bonducella Wild on normal and Streptozotocin Induced Diabetic Rats. Research J. Pharm. and Tech. 2020; 13(2): 857-861. 
14.    Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY. Antiartherosclerotic effects of plant flavonoids. BioMed Research International. 2014; 2014(1): 480258.  https://doi.org/10.1155/2014/480258
15.    Bushra Sultana BS, Farooq Anwar FA. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. doi:10.1016/j.foodchem.2007.11.053
16.    S, P., and K.S, M. (2014). Antioxidant and drug metabolism. Free Radicals and Antioxidants, 4(1), 1–2. https://doi.org/10.5530/fra.2014.1.1
17.    Pham-Huy, Lien Ai et al. “Free radicals, antioxidants in disease and health.” International journal of biomedical science : IJBS vol. 4,2 (2008): 89-96.
18.    Blokhina, Olga et al. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany.  2003; 91: 179-94. doi:10.1093/aob/mcf118
19.    Sandhar, H. K., Kumar, B., Prasher, S., Tiwari, P., Salhan, M., and Sharma, P. A review of phytochemistry and pharmacology of flavonoids. Internationale Pharmaceutica Sciencia. 2011; 1(1): 25-41.
20.    Agrawal, A. D. Pharmacological activities of flavonoids: a review. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2011: 1394-1398. DOI:10.37285/ijpsn.2011.4.2.3
21.    Pal, Dilip Kumar and Verma, Preet. Flavonoids: A powerful and abundant source of antioxidants. Int J Pharm Pharm Sci. 2013; 5(3): 95-98.
22.    Lakhanpal, P., and Rai, D. K. Quercetin: a versatile flavonoid. Internet Journal of Medical Update. 2007; 2(2): 22-37. DOI: 10.4314/ijmu.v2i2.39851
23.    Anand David, Alexander Victor et al. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy Reviews. 2016; 10: 84-89. doi:10.4103/0973-7847.194044
24.    Rauf, Abdur et al. Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research.  PTR. 2018; 32(11): 2109-2130. doi:10.1002/ptr.6155
25.    Al-Ishaq, Raghad Khalid et al. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules. 2019; 9(9): 430 doi:10.3390/biom9090430
26.    Eid, Hoda M, and Pierre S Haddad. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Current Medicinal Chemistry.  2017; 24(4): 355-364. doi:10.2174/0929867323666160909153707
27.    Suman Saha, Amit Roy, Sanjib Bahadur, Ananta Choudhury. Fabrication and in-vitro evaluation of liposomal quercetin and its optimization. Research J. Pharm. and Tech. 2018; 11(1): 61-64.
28.    Eid, Hoda M et al. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacognosy Magazine. 2015; 11(41): 74-81. doi:10.4103/0973-1296.149708
29.    Ganjayi, Muni Swamy et al. Quercetin-3-O-rutinoside from Moringa oleifera Downregulates Adipogenesis and Lipid Accumulation and Improves Glucose Uptake by Activation of AMPK/Glut-4 in 3T3-L1 Cells. Revista brasileira de farmacognosia: Orgao oficial da Sociedade Brasileira de Farmacognosia.  2023; 33(2): 334-343. doi:10.1007/s43450-022-00352-9
30.    Li, Yao et al. Quercetin, Inflammation and Immunity. Nutrients. 2016; 8(3):  167 doi:10.3390/nu8030167
31.    Boots, Agnes W et al. Health effects of quercetin: from antioxidant to nutraceutical. European Journal of Pharmacology. 2008; 585(2-3): 325-37. doi:10.1016/j.ejphar.2008.03.008
32.    Xu, Dong et al. “Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application.” Molecules (Basel, Switzerland) vol. 24,6 1123. 21 Mar. 2019, doi:10.3390/molecules24061123
33.    Durga. M, Nathiya. S, Devasena.T. A Simple Protocol for the Isolation of Quercetin from Trigonella foenum-graecum L. Leaves and Antioxidant analysis for Combating Toxicity. Research J. Pharm. and Tech. 2017; 10(7): 2047-2052.
34.    Dinesh Kumar V., Priya Ranjan Prasad Verma. Development of a poly (ε Caprolactone) based nanoparticles for oral delivery of Quercetin. Research J. Pharm. and Tech. 2015; 8(7): 836-840.
35.    Waheed Janabi, Alhamzah Hasan et al. “Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases.” Iranian Journal of Basic Medical Sciences. 2020; 23(2): 140-153. doi:10.22038/IJBMS.2019.35125.8353
36.    Geoffrey, A. B., Prasana, J. C., and Muthu, S. Structure-Activity relationship of Quercetin and its Tumor Necrosis Factor Alpha inhibition activity by computational and machine learning methods. Materials Today: Proceedings. 2022;; 50: 2609-2614. DOI:10.1016/j.matpr.2020.07.464
37.    Dhanya, R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomedicine and pharmacotherapy = Biomedecine and Pharmacotherapie. 2022; 146: 112560. doi:10.1016/j.biopha.2021.112560
38.    Cai, Kuihua, and Anders Bennick. Effect of salivary proteins on the transport of tannin and quercetin across intestinal epithelial cells in culture. Biochemical Pharmacology. 2006; 72(8): 974-80. doi:10.1016/j.bcp.2006.06.026
39.    Hai, Y., Zhang, Y., Liang, Y., Ma, X., Qi, X., Xiao, J.  and Yue, T. Advance on the absorption, metabolism, and efficacy exertion of quercetin and its important derivatives: absorption, metabolism and function of quercetin. Food Frontiers, 2020; 1(4): 420-434. DOI:10.1002/fft2.50

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available