Author(s):
Dadih Supriadi, Anis Yohana Chaerunisaa, Marline Abdassah, Tiana Milanda
Email(s):
dadih.supriadi@bku.ac.id
DOI:
10.52711/0974-360X.2025.00153
Address:
Dadih Supriadi1,3*, Anis Yohana Chaerunisaa1, Marline Abdassah1, Tiana Milanda2
1Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia.
2Departement of Microbilogy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
3Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
Calcium carbonate from eggshells (CCE) can be a good source of calcium because it contains little heavy metal, is a good absorbent, and is inexpensive. The function of calcium carbonate from eggshells can be enhanced by the nanosizing process, which improves the physicochemical properties of calcium carbonate. This research aims to determine the type of stabilizer (steric barrier) that is suitable for calcium carbonate isolate and then to make the nanosuspension using the bead mill method by varying the process parameters and testing its acid-neutralizing capacities and antibacterial activity. The method of this research is the screening of steric stabilizers (Tween 80, PVA, PEG 400, PEG 2000, PEG 6000, and PEG 2,000,000) for CCE colloidal particles. It is possible to produce CCE nanosuspension more efficiently by changing the process parameters, such as milling time (2, 4, and 8 hours), CCE suspension concentration (1%, 5%, and 10%), and bead size (0.18mm, 0.6mm, 0.08 mm, and 0.08:0.18mm 1:1). Particle size, polydispersity index, and zeta potential of CCE nanosuspension were optimally evaluated as parameters. Evaluating the accelerated stability, antibacterial, and acid-neutralizing characteristics of CCE nanosuspension comparisons between all tests and calcium carbonate from commercial sources (CCC). The results showed that a good steric stabilizer for stabilizing CCE colloidal particles is PVA, among other steric stabilizers. CCE can be made into nanosuspension using the bead mill method, and the optimal process parameters are 2 hours of milling time, 5% CCE suspension concentration, and 0.18mm bead size. The particle size of CCE nanosuspension was 335±44nm, with a polydispersity index of 0.337 ± 0.14 and a zeta potential of -9.3±3.4 mV. The acid-neutralizing capacity of the CCE nanosuspension (20±0.71mEq) was greater (p<0.05) than the micro-suspension (15.8±0.50mEq), but slightly smaller (p<0.05) than the CCC nanosuspension (21.6±0.32mEq). The isolate nanosuspension had antibacterial activity against S. aureus (inhibition diameter 12.2±0.3mm) and E. coli (12.8±0.8mm), but the activity was slightly smaller (p<0.05) when compared to CCC nanosuspension (S. aureus, 16.2±1.0mm; E. coli, 15.1±0.6mm). The bead mill technique could potentially be utilized to create nanosuspensions of CCE. In comparison to micro-suspension, the CCE nanosuspension exhibits higher antacid-neutralizing capability and antibacterial activity.
Cite this article:
Dadih Supriadi, Anis Yohana Chaerunisaa, Marline Abdassah, Tiana Milanda. Calcium Carbonate from Eggshell Nanosuspension preparation by Bead Mill Method and its Antacid and Antibacterial activities. Research Journal Pharmacy and Technology. 2025;18(3):1063-1. doi: 10.52711/0974-360X.2025.00153
Cite(Electronic):
Dadih Supriadi, Anis Yohana Chaerunisaa, Marline Abdassah, Tiana Milanda. Calcium Carbonate from Eggshell Nanosuspension preparation by Bead Mill Method and its Antacid and Antibacterial activities. Research Journal Pharmacy and Technology. 2025;18(3):1063-1. doi: 10.52711/0974-360X.2025.00153 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-3-14
REFERENCES:
1. Executives P. Poultry Executives. Published online 2021: 24-25.
2. Pertanian K. Outlook Komoditas Peternakan Telur Ayam Ras Petelur. Pus Data dan Sist Inf Pertan Sekr Jenderal Kementeri Pertan. 2022; 17.
3. Verma N, Kumar V, Bansal MC. Utilization of egg shell waste in cellulase production by neurospora crassa under wheat bran-based solid state fermentation. Polish J Environ Stud. 2012; 21(2).
4. Aditya S, Stephen J, Radhakrishnan M. Utilization of eggshell waste in calcium-fortified foods and other industrial applications: A review. Trends Food Sci Technol. 2021; 115(June): 422-432. doi:10.1016/j.tifs.2021.06.047
5. Quina MJ, Soares MAR, Quinta-Ferreira R. Applications of industrial eggshell as a valuable anthropogenic resource. Resour Conserv Recycl. 2017; 123: 176-186. doi:10.1016/j.resconrec.2016.09.027
6. Therdthai N, Soontrunnarudrungsri A, Khotchai W. Modified eggshell powder using thermal treatment and its application in Ca-fortified dog biscuits. Heliyon. 2023; 9(2): e13093. doi:10.1016/j.heliyon.2023.e13093
7. Gao Y, Zhao Z, Song L, et al. Eggshell supported Cu doped FeOx magnetic nanoparticles as peroxymonosulfate activator for carbamazepine degradation. Chem Eng J. 2023; 454(P2): 140282. doi:10.1016/j.cej.2022.140282
8. Guru PS, Dash S. Sorption on eggshell waste - A review on ultrastructure, biomineralization and other applications. Adv Colloid Interface Sci. 2014; 209: 49-67. doi:10.1016/j.cis.2013.12.013
9. Huang C, Huang H, Qin P. In-situ immobilization of copper and cadmium in contaminated soil using acetic acid-eggshell modified diatomite. J Environ Chem Eng. 2020; 8(4): 103931. doi:10.1016/j.jece.2020.103931
10. Nasrollahzadeh M, Sajadi SM, Hatamifard A. Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl Catal B Environ. 2016; 191: 209-227. doi:10.1016/j.apcatb.2016.02.042
11. Praipipat P, Ngamsurach P, Pratumkaew K. The synthesis, characterizations, and lead adsorption studies of chicken eggshell powder and chicken eggshell powder-doped iron (III) oxide-hydroxide. Arab J Chem. 2023; 16(5): 104640. doi:10.1016/j.arabjc.2023.104640
12. Gaonkar M, Chakraborty AP, Professor A. Application of Eggshell as Fertilizer and Calcium Supplement Tablet. Int J Innov Res Sci Eng Technol (An ISO Certif Organ. 2007; 3297(3): 3520-3525. doi:10.15680/IJIRSET.2016.0503183
13. Waheed M, Butt MS, Shehzad A, et al. Eggshell calcium: A cheap alternative to expensive supplements. Trends Food Sci Technol. 2019; 91(July): 219-230. doi:10.1016/j.tifs.2019.07.021
14. Annam Renita A, Chowdhury PP, Sultana P, Phukan P, Hannan A. Utilization of waste eggshells for production of renewable catalyst for transesterification. Int J Pharm Pharm Sci. 2016; 8(7): 143-146.
15. Chingakham C, David A, Sajith V. Fe3O4 nanoparticles impregnated eggshell as a novel catalyst for enhanced biodiesel production. Chinese J Chem Eng. 2019; 27(11): 2835-2843. doi:10.1016/J.CJCHE.2019.02.022
16. Zabidi NA, Nazri F, Syafinaz I, et al. Eggshell-derived Amorphous Calcium Phosphate: Synthesis, characterization and biofunctions as bone graft materials in novel 3D osteoblastic spheroids model. Int J Biol Macromol. 2022; 2(2): 33-47. doi:10.1016/j.smaim.2023.04.001
17. Siriprom W, Sangwaranatee N, Hidayat R, Kongsriprapan S. The physicochemical characteristic of biodegradable methylcellulose film reinforced with chicken eggshells. Mater Today Proc. 2018;5(7):14836-14839. doi:10.1016/j.matpr.2018.04.015
18. Girija C, M. N. Sivakumar. Amalgamation and Characterization of Hydroxyapatite Powders from Eggshell for Functional Biomedical Application. Res J Pharm Tech. 2018; 11(10): 4242-4244. doi:10.5958/0974-360X.2018.00777.1
19. Omelka R, Martiniakova M, Babikova M, et al. Chicken Eggshell Powder More Effectively Alleviates Bone Loss Compared to Inorganic Calcium Carbonate: an Animal Study Performed on Ovariectomized Rats. J Physiol Pharmacol. 2021; 72(6). doi:10.26402/JPP.2021.6.05
20. Rajput D, Verma A, Qureshi A, et al. Evaluation of Stability Parameters for Calcium Carbonate Antacid Suspension using Different Concentrations of Suspending Agents. Res J Pharm Tech. 2014; 7(9): 999-1003.
21. USP44. Usp 44 - Nf 39 2021. Published online 2021.
22. Linares CF, Quintero J, Martínez L, González G. A new antacid drug from activated carbon modified with calcium carbonate. Mater Lett. 2007; 61(11-12): 2362-2364. doi:10.1016/j.matlet.2006.09.012
23. Puriyani AD, Soewandhi SN, Wikarsa S. Kalsinasi dan freeze drying hidrotalsit untuk meningkatkan kapasitas penetralan asam. Maj Farm Indones. 2010; 21(1): 52-56.
24. Ataee RA, Derakhshanpour J, Mehrabi Tavana A, Eydi A. Antibacterial effect of calcium carbonate nanoparticles on Agrobacterium tumefaciens. J Mil Med. 2011; 13(2): 65-70.
25. Made Joni I, Vanitha M, Panatarani C, Faizal F. Dispersion of amorphous silica nanoparticles via beads milling process and their particle size analysis, hydrophobicity and anti-bacterial activity. Adv Powder Technol. 2020; 31(1): 370-380. doi:10.1016/j.apt.2019.10.029
26. ICH. International Conference on Harmonization (ICH). Guidance for industry: Q1A(R2) Stability Testing of New Drug Subtances and Products. Ich Harmon Tripart Guidel. 2003; 4(February): 24.
27. Milanda T, Febriyanti RM, Kusuma ASW, Diantini A. Antibacterial and Cytotoxic Activity of Selected Raw-Consumed Vegetables in West Java, Indonesia. Pharmacogn J. 2022; 14(2): 289-295. doi:10.5530/pj.2022.14.36
28. Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res. 2020; 24(1): 1-16. doi:10.1186/s40824-020-0184-8
29. Kulkarni RR, Phadtare DG, Saudagar RB. A Novel Approach Towards Nanosuspension. Asian J Pharm Res. 2015; 5(4): 186-194. doi:10.5958/2231-5691.2015.00029.5x
30. Shi J. Steric Stabilization. The Ohio State University; 2002. doi:10.1111/j.1365-2273.1983.tb01663.x
31. Sinko PJ. Martin’s Physical Pharmacy and Pharmaceutical Sciences - Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences. Vol 53. Wolters Kluwer; 2011.
32. Ghaffari-Moghaddam M, Eslahi H. Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arab J Chem. 2014; 7(5): 846-855. doi:10.1016/j.arabjc.2013.11.011
33. Sharma S, Issarani R, Nagori BP. Development of Aceclofenac Nanosuspension Stabilized by Poly vinyl alcohol and Sodium dodecyl sulphate. Res J Pharm Tech. 2015; 8(3): 235-241. doi:10.5958/0974-360X.2015.00027.X
34. Aher SS, Malsane ST, Saudagar RB. Nanosuspension: An Overview. Asian J Res Pharm Sci. 2017; 7(2): 81-86. doi:10.5958/2231-5659.2017.00012.1
35. Raj D, Prasad M, Ujwala P, Jagruti P, Rajendra S. Nanosuspension a Promising Tool for Solubility Enhancement: A Review. Asian J Pharm Technol. 2021; 11(3): 252. doi:10.52711/2231-5713.2021.00042
36. Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011; 16(7-8): 354-360. doi:10.1016/j.drudis.2010.02.009
37. Takatsuka T, Endo T, Jianguo Y, Yuminoki K, Hashimoto N. Nanosizing of poorly water soluble compounds using rotation/revolution mixer. Chem Pharm Bull. 2009; 57(10): 1061-1067. doi:10.1248/cpb.57.1061
38. Khandbahale S V. A Review- Nanosuspension Technology in Drug Delivery System. Asian J Pharm Res. 2019; 9(2): 130-138. doi:10.5958/2231-5691.2019.00021.2
39. Silva LD, Arrúa EC, Pereira DA, et al. Elucidating the influence of praziquantel nanosuspensions on the in vivo metabolism of Taenia crassiceps cysticerci. Acta Trop. 2016; 161: 100-105. doi:10.1016/j.actatropica.2016.06.002
40. Supriadi D. Pembuatan Nanopartikel Cangkang Telur Dengan Cara Sonikasi Menggunakan Desain Faktorial Dan Karakterisasinya. ITB; 2011.
41. Mohyeldin SM, Mehanna MM, Elgindy NA. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity. Int J Nanomedicine. 2016; 11: 2209-2222. doi:10.2147/IJN.S94089
42. Na YG, Pham TMA, Byeon JJ, et al. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int J Pharm. 2020; 581(March): 119287. doi:10.1016/j.ijpharm.2020.119287
43. El-Sheikh SM, El-Sherbiny S, Barhoum A, Deng Y. Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surfaces A Physicochem Eng Asp. 2013; 422: 44-49. doi:10.1016/j.colsurfa.2013.01.020
44. Kheradkar VA, Mulla JAS. Nanosuspension: A Novel Technology for Drug Delivery. Asian J Res Pharm Sci. 2023; 13(2): 106. doi:10.52711/2231-5659.2023.00020
45. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011; 63(6): 456-469. doi:10.1016/j.addr.2011.02.001
46. CLSI. CLSI M100-ED29: 2021 Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. Vol 40.; 2020.
47. Milanda T, Muktiwardojo M, Widyana FA. Potensi Antibakteri Daun Nanas Kerang terhadap Escherichia coli dan Shigella dysenteriae. J Indones Soc Integr Chem. 2021; 13(2): 58-68. doi:10.22437/jisic.v13i2.14504
48. Shamalie A, Kalaimathi J. A Comparative Antimicrobial Activity of Annona Squamosa Aqueous Leaves Extract and its Mediated Synthesized Silver Nanoparticles. Res J Pharm Tech. 2016; 9(12): 2228-2233. doi:10.5958/0974-360X.2016.00450.9
49. Mohammed AM, Ali MM. Synthesis and Characterisation of Zirconium Oxide Nanoparticles Via the Hydrothermal Method and Evaluation of their Antibacterial Activity. Res J Pharm Tech. 2021; 14(2): 938-942. doi:10.5958/0974-360X.2021.00167.0
50. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C. 2014; 44: 278-284. doi:10.1016/j.msec.2014.08.031