Author(s):
Shinta Wijayanti, Endah Mardiati, Ani Melani Maskoen, Ganesha Wandawa, Oryce Zahara, Ivan A Halim
Email(s):
shintawijayanti21@gmail.com
DOI:
10.52711/0974-360X.2025.00175
Address:
Shinta Wijayanti1,2*, Endah Mardiati1, Ani Melani Maskoen3, Ganesha Wandawa4, Oryce Zahara5, Ivan A Halim2,
1Department of Orthodontics, Faculty of Dentistry, Universitas Padjadjaran, Jawa Barat, Indonesia.
2Doctoral Candidate, Faculty of Dentistry, Universitas Padjadjaran, Jawa Barat, Indonesia.
3Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Jawa Barat, Indonesia.
4Department of Orthodontics, Faculty of Dentistry, Universitas Pembangunan Nasional Veteran, Jakarta, Indonesia.
5Department of Orthodontics, Faculty of Dentistry, Universitas Andalas, Sumatera Barat, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 3,
Year - 2025
ABSTRACT:
In orthodontic therapy, efficient tooth movement is essential for aesthetics and occlusion function, so accelerating tooth movement is ideal. Hyperbaric oxygen treatment (HBOT) and Myrmecodia pendans (M. pendans) may speed up tooth movement by modulating biological processes. The research to assess the efficacy of HBOT and M. pendans ethanol extract in accelerating incisive tooth movement during orthodontic therapy, examining changes in osteoclasts, osteoblasts, and TNF-a/TGF-ß gene expression. Twenty-five orthodontic model animals were tested for incisive distance using calipers, H&E staining of osteoblasts and osteoclasts, and RT-PCR for TNF-a and TGF-ß gene expression. Incisive tooth movement improved in the T2 (2.78±0.10) and T3 (2.78±0.08) groups. Osteoclast cells performed best (mm2) in the T4 (44.36±7.14) and T3 (45.84±8.34) groups. The T2 and T4 groups significantly impact bone reabsorption (osteoblast) (50.06±1.83 and 44.26±6.26), respectively. TNF-a gene expression was ideal in the T4 group (0.47±0.20), while TGF-ß gene expression was highest in the T3 (68.45±2.57) and T2 (44.87±6.71) groups. Performance study revealed a 60% influence of TNF-a and TGF-ß genes, with a 20% impact on incisor tooth, osteoclast cell, and osteoblast movement characteristics. The combination of hyperbaric oxygen therapy and the application of M. pendans shows significant potential in accelerating incisive tooth movement in orthodontic treatment.
Cite this article:
Shinta Wijayanti, Endah Mardiati, Ani Melani Maskoen, Ganesha Wandawa, Oryce Zahara, Ivan A Halim. Effects of Hyperbaric Oxygen and Myrmecodia pendans Therapy on Alveolar Bone Remodeling in Orthodontic Treatment. Effects of Hyperbaric Oxygen and Myrmecodia pendans Therapy on Alveolar Bone Remodeling in Orthodontic Treatment. Research Journal of Pharmacy and Technology. 2025;18(3):1209-7. doi: 10.52711/0974-360X.2025.00175
Cite(Electronic):
Shinta Wijayanti, Endah Mardiati, Ani Melani Maskoen, Ganesha Wandawa, Oryce Zahara, Ivan A Halim. Effects of Hyperbaric Oxygen and Myrmecodia pendans Therapy on Alveolar Bone Remodeling in Orthodontic Treatment. Effects of Hyperbaric Oxygen and Myrmecodia pendans Therapy on Alveolar Bone Remodeling in Orthodontic Treatment. Research Journal of Pharmacy and Technology. 2025;18(3):1209-7. doi: 10.52711/0974-360X.2025.00175 Available on: https://www.rjptonline.org/AbstractView.aspx?PID=2025-18-3-36
REFERENCES:
1. Gkantidis N, Christou P, Topouzelis N. The orthodontic–periodontic interrelationship in integrated treatment challenges: a systematic review. Journal of Oral Rehabilitation. 2010; 37(5): 377-90. https://doi.org/10.1111/j.1365-2842.2010.02068.x
2. De Molon RS, de Avila ED, Cirelli JA, et al. Optimizing maxillary aesthetics of a severe compromised tooth through orthodontic movement and dental implants. Case Reports in Dentistry. 2014; 2014. https://doi.org/10.1155%2F2014%2F103808.
3. Akbar YM, Maskoen AM, Mardiati E, Wandawa G, Setiawan AS. Potential Use of Hyperbaric Oxygen Therapy in Orthodontic Treatment: A Systematic Review of Animal Studies. Eur J Dent. 2023; 17(1): 16-23. https://doi.org/10.1055/s-0042-1755625
4. Ortega MA, Fraile-Martinez O, García-Montero C, et al. A general overview on the hyperbaric oxygen therapy: applications, mechanisms and translational opportunities. Medicina 2021; 57(9): 864. https://doi.org/10.3390%2Fmedicina57090864
5. Gottrup F, Dissemond J, Baines C, et al. Use of oxygen therapies in wound healing: focus on topical and hyperbaric oxygen treatment. Journal of wound care. 2017; 26(Sup5): S1-S43. https://doi.org/10.12968/jowc.2017.26.sup5.s1
6. Sudiono J, Hardina M. The effect of Myrmecodia pendans ethanol extract on inflamed pulp: study on sprague dawley rats. Molecular and Cellular Biomedical Sciences. 2019; 3(2): 115-21. https://doi.org/10.21705/mcbs.v3i2.70
7. Nikolova MP, Apostolova MD. Advances in multifunctional bioactive coatings for metallic bone implants. Materials 2022; 16(1): 183. https://doi.org/10.3390/ma16010183
8. Prameswari N, Sunaryo IR, Damaiyanti DW, Febrina A. The influence of hyperbaric oxygen therapy (HBOT) to intercausal relationship between blood vessels, osteoblast, and new bone formation during maxillary suture expansion. Padjadjaran Journal of Dentistry. 2020; 32(1): 14-21. https://doi.org/10.24198/pjd.vol32no1.19684
9. Gardin C, Bosco G, Ferroni L, et al. Hyperbaric Oxygen Therapy Improves the Osteogenic and Vasculogenic Properties of Mesenchymal Stem Cells in the Presence of Inflammation In Vitro. Int J Mol Sci. 2020; 21(4). https://doi.org/10.3390%2Fijms21041452
10. Eid H, Sayed W. Effect of hyperbaric oxygen mobility of orthodontically treated teeth. Egyptian Orthodontic Journal. 2010;38:107-24. http://dx.doi.org/10.21608/eos.2010.79029
11. Yasin JJ, Brahmanta A, Pargaputri AF. Innovation of Hyperbaric Oxygen Therapy and Stichopus hermanii to The Amount of Macrophages in Periodontal Ligaments in Pressure and Tension Areas During Orthodontic Tooth Movement. DENTA 2019; 13(1): 1-10.
12. Alamsyah Y, Ilyas S, Putra DP. The Mangiferin (Mangifera Indica Linn) Effect Against the Calcium Degradation, Bones Resorption and Ossification of Rattus novergicus of Post-orthodontic treatment. Journal of International Dental and Medical Research 2020; 13(2): 430-35.
13. Gholamalizadeh A, Nazifkerdar S, Safdarian N, et al. Critical elements in tissue engineering of craniofacial malformations. Regenerative Medicine. 2023; 18(6): 487-504. https://doi.org/10.2217/rme-2022-0128
14. Thiruvevenkadam IA, Ling LT. Effect of cervical extensor strengthening on severity of temporomandibular joint disorder among university students: A randomized controlled trial. Research Journal of Pharmacy and Technology. 2021; 14(4): 2233-42. https://doi.org/10.52711/0974-360X.2021.00397
15. Yuli N, Wibi R, Nur P, Edy W, Respati SD. Effect of Aloe vera gel on the expression of FGF-2, TGF-β, and Smad3 in the root surface of rat teeth after Traumatic avulsion. Research Journal of Pharmacy and Technology. 2019; 12(9): 4405-09. https://doi.org/10.5958/0974-360X.2019.00758.3
16. Sumalatha S, Tantri G, Shreshta J, et al. Evaluation of an Ayurvedic preparation-‘Ekangaveera Rasa’for possible metal toxicity: Behavioral, biochemical and histopathological analysis. Research Journal of Pharmacy and Technology. 2021; 14(12): 6491-95. https://doi.org/10.52711/0974-360X.2021.01122
17. Roy T, Chakraborty P, Chowdhury RR, Chatterjee TK. Possible Beneficial Role of Novel Anti-Osteoarthritic Drug Diacerein in Rheumatoid Arthritis. Research Journal of Pharmacy and Technology. 2022; 15(6): 2715-20. https://doi.org/10.52711/0974-360X.2022.00454
18. Guru SR, Aghanashini S, Saroch N. Adipokines in periodontal disease-Culprits or accomplice? Research Journal of Pharmacy and Technology. 2023; 16(4): 2061-67. https://doi.org/10.52711/0974-360X.2023.00339
19. Ahmad F, Surapaneni KM, Al-Subaie AM, Kamaraj B. Insight into Ethnopharmacology of Quercus Infectoria with the possible mechanism of action. Research Journal of Pharmacy and Technology. 2023; 16(8): 3999-4006. https://doi.org/10.52711/0974-360X.2023.00656
20. Amin MN, Permatasari N. The role of stem cell on orthodontic tooth movement induced-alveolar bone remodeling. Research Journal of Pharmacy and Technology. 2023; 16(1): 123-28. https://doi.org/10.52711/0974-360X.2023.00023
21. Dharsono HDA, Mujahid M, Apriyanti E, et al. Tannin derived from Uncaria gambir Roxb. as potential Enterococcus faecalis UDP-N-Acetylenolpyruvoyl-Glucosamine Reductase (Mur Benzyme) inhibitor: In-silico antibacterial study. Research Journal of Pharmacy and Technology 2023; 16(10): 4568-74. https://doi.org/10.52711/0974-360X.2023.00744
22. Górski K, Stefanik E, Bereznowski A, Polkowska I, Turek B. Application of hyperbaric oxygen therapy (HBOT) as a healing aid after extraction of incisors in the equine odontoclastic tooth resorption and hypercementosis syndrome. Veterinary Sciences 2022; 9(1): 30. https://doi.org/10.3390%2Fvetsci9010030
23. Cho Y-D, Kim K-H, Lee Y-M, Ku Y, Seol Y-J. Periodontal wound healing and tissue regeneration: a narrative review. Pharmaceuticals 2021; 14(5): 456. https://doi.org/10.3390/ph14050456
24. Krishnan V, Davidovitch Ze, Kuijpers‐Jagtman AM. The Increased Stature of Orthodontics. Integrated Clinical Orthodontics 2023: 1-17. http://dx.doi.org/10.1002/9781119870081.ch1
25. Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of physical and pharmacological therapy in enhancing bone regeneration formation during distraction osteogenesis. Frontiers in Cell and Developmental Biology 2022; 10: 837430. https://doi.org/10.3389/fcell.2022.837430
26. Umiatin U, Hadisoebroto Dilogo I, Sari P, Kusuma Wijaya S. Histological analysis of bone callus in delayed union model fracture healing stimulated with pulsed electromagnetic fields (PEMF). Scientifica 2021; 2021. https://doi.org/10.1155/2021/4791172
27. Sadek KM, El Moshy S, Radwan IA, et al. Molecular basis beyond interrelated bone resorption/regeneration in periodontal diseases: a concise review. International Journal of Molecular Sciences. 2023; 24(5): 4599. https://doi.org/10.3390/ijms24054599
28. Kim HN. Bioengineered growth factor delivery molecules for vascularisation and wound healing [UNSW Sydney; 2021. http://dx.doi.org/10.1002/anbr.202300131
29. Poniatowski ŁA, Wojdasiewicz P, Gasik R, Szukiewicz D. Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators of inflammation 2015; 2015. https://doi.org/10.1155/2015/137823
30. Li Y, Zhan Q, Bao M, Yi J, Li Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. International Journal of Oral Science. 2021; 13(1): 20. https://doi.org/10.1038/s41368-021-00125-5
31. Yamaguchi M, Garlet GP. The role of inflammation in defining the type and pattern of tissue response in orthodontic tooth movement. Biological mechanisms of tooth movement: Second edition 2015: 121-37. https://doi.org/10.1111/j.1365-2842.2010.02068.x